PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Investigations of modular microfluidic geometries for passive manipulations on droplets

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Multiple pipetting is a standard laboratory procedure resulting in the compartmentalisation of a liquid sample. Microfluidics offers techniques which can replace this process by the use of tiny droplets. Passive manipulation on droplets is an interesting and promising approach for the design of microfluidic devices which on one hand are easy-to-use and on the other, execute complex laboratory procedures. We present a comprehensive study of the geometry of microfluidic components which encode different operations on droplets into the structure of the device. The understanding of hydrodynamic interactions between the continuous flow and a droplet travelling through confined space of nontrivial microfluidic geometries is crucial for a rational and efficient design of new generation of modular microfluidic processors with embedded instructions.
Rocznik
Strony
139--149
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B St., 02-106 Warsaw, Poland
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B St., 02-106 Warsaw, Poland
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B St., 02-106 Warsaw, Poland
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B St., 02-106 Warsaw, Poland
autor
  • Department of Biophysics, Warsaw University of Life Sciences, 159 Nowoursynowska St., Building 34, 02-776 Warsaw, Poland
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B St., 02-106 Warsaw, Poland
Bibliografia
  • [1] F. Shen, B. Sun, J.E. Kreutz, E.K. Davydova, W. Du, P.L. Reddy, L.J. Joseph, and R.F. Ismagilov, “Multiplexed Quantification of Nucleic Acids with Large Dynamic Range Using Multivolume Digital RT-PCR on a Rotational SlipChip Tested with HIV and Hepatitis C Viral Load”, Journal of the American Chemical Society 133 (44), 17705–17712 (2011)
  • [2] G.M. Whitesides, “The origins and the future of microfluidics”, Nature 442 (7101), 368–373 (2006)
  • [3] S.-Y. Teh, R. Lin, L.-H. Hung, and A.P. Lee, “Droplet microfluidics”, Lab on a Chip 8 (2), 198 (2008)
  • [4] P. Garstecki, A. Ganan-Calvo, and G. Whitesides, “Formation of bubbles and droplets in microfluidic systems”, Bull. Pol. Ac.: Tech. 53 (4), 361 – 372 (2005)
  • [5] A.M. Pit, M.H.G. Duits, and F. Mugele, “Droplet Manipulations in Two Phase Flow Microfluidics”, Micromachines 6 (11), 1768–1793 (2015)
  • [6] H. Song, D.L. Chen, and R.F. Ismagilov, “Reactions in Droplets in Microfluidic Channels”, Angewandte Chemie International Edition 45 (44), 7336–7356 (2006)
  • [7] A.B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, and W.T.S. Huck, “Microdroplets in Microfluidics: An Evolving Platform for Discoveries in Chemistry and Biology”, Angewandte Chemie International Edition 49 (34), 5846–5868 (2010)
  • [8] K. Churski, T.S. Kaminski, S. Jakiela, W. Kamysz, W. Baranska-Rybak, D.B. Weibel, and P. Garstecki, “Rapid screening of antibiotic toxicity in an automated microdroplet system”, Lab on a Chip 12 (9), 1629–1637 (2012)
  • [9] S. Jakiela, T.S. Kaminski, O. Cybulski, D.B. Weibel, and P. Garstecki, “Bacterial Growth and Adaptation in Microdroplet Chemostats”, Angewandte Chemie International Edition 52 (34), 8908–8911 (2013)
  • [10] S. Zeng, B. Li, X. Su, J. Qin, and B. Lin, “Microvalve-actuated precise control of individual droplets in microfluidic devices”, Lab on a Chip 9 (10), 1340–1343 (2009)
  • [11] B.-C. Lin and Y.-C. Su, “On-demand liquid-in-liquid droplet metering and fusion utilizing pneumatically actuated membrane valves”, Journal of Micromechanics and Microengineering 18 (11), 115005 (2008)
  • [12] K. Churski, P. Korczyk, and P. Garstecki, “High-throughput automated droplet microfluidic system for screening of reaction conditions”, Lab on a Chip 10 (7), 816–818 (2010)
  • [13] S. Jakiela, S. Makulska, P.M. Korczyk, and P. Garstecki, “Speed of flow of individual droplets in microfluidic channels as a function of the capillary number, volume of droplets and contrast of viscosities”, Lab on a Chip 11 (21), 3603–3608 (2011)
  • [14] H.-H. Jeong, B. Lee, S.H. Jin, S.-G. Jeong, and C.-S. Lee, “A highly addressable static droplet array enabling digital control of a single droplet at pico-volume resolution”, Lab on a Chip 16 (9), 1698–1707 (2016)
  • [15] A.W. Martinez, S.T. Phillips, G.M. Whitesides, and E. Carrilho, “Diagnostics for the Developing World: Microfluidic Paper-Based Analytical Devices”, Analytical Chemistry 82 (1), 3–10 (2010)
  • [16] W. Du, L. Li, K.P. Nichols, and R.F. Ismagilov, “SlipChip”, Lab on a Chip 9 (16), 2286–2292 (2009)
  • [17] X. Niu, S. Gulati, J. B. Edel, and A.J. deMello, “Pillar-induced droplet merging in microfluidic circuits”, Lab on a Chip 8, 1837 (2008)
  • [18] M. Zagnoni and J.M. Cooper, “A microdroplet-based shift register”, Lab on a Chip 10 (22), 3069–3073 (2010)
  • [19] X. Niu, F. Gielen, J.B. Edel, and A.J. deMello, “A microdroplet dilutor for high-throughput screening”, Nature Chemistry 3 (6), 437–442 (2011)
  • [20] C. Chung, M. Lee, K. Char, K.H. Ahn, and S.J. Lee, “Droplet dynamics passing through obstructions in confined microchannel flow”, Microfluidics and Nanofluidics 9 (6), 1151–1163 (2010), wOS:000284335800013
  • [21] M. Sun, S.S. Bithi, and S.A. Vanapalli, “Microfluidic static droplet arrays with tuneable gradients in material composition”, Lab on a Chip 11 (23), 3949 (2011)
  • [22] M. Prakash and N. Gershenfeld, “Microfluidic Bubble Logic”, Science 315 (5813), 832–835 (2007)
  • [23] B. Mosadegh, T. Bersano-Begey, J.Y. Park, M.A. Burns, and S. Takayama, “Next-generation integrated microfluidic circuits”, Lab on a Chip 11 (17), 2813 (2011)
  • [24] P.M. Korczyk, L. Derzsi, S. Jakieła, and P. Garstecki, “Microfluidic traps for hard-wired operations on droplets”, Lab on a Chip 13 (20), 4096–4102 (2013)
  • [25] V. van Steijn, P.M. Korczyk, L. Derzsi, A.R. Abate, D.A. Weitz, and P. Garstecki, “Block-and-break generation of microdroplets with fixed volume”, Biomicrofluidics 7 (2), 024108– 024108–8 (2013)
  • [26] D. Zaremba, S. Blonski, and P. Korczyk, “Experimental analysis of modular microfluidic geometries for passive manipulations on droplets”, Book of abstracts, 5th Conference on Nanoand Micromechanics, Wrocław 2017 180–182 (2017)
  • [27] K.A. Brakke, “The Surface Evolver”, Experimental Mathematics 1 (2), 141–165 (1992)
  • [28] S. Jakiela, P.M. Korczyk, S. Makulska, O. Cybulski, and P. Garstecki, “Discontinuous Transition in a Laminar Fluid Flow: A Change of Flow Topology inside a Droplet Moving in a Micron-Size Channel”, Physical Review Letters 108 (13), 134501 (2012)
  • [29] M. Raffel, C.E. Willert, and J. Kompenhans, Particle image velocimetry: a practical guide, Springer (1998)
  • [30] S. Blonski, P. Korczyk, and T. Kowalewski, “Analysis of turbulence in a micro-channel emulsifier”, International Journal of Thermal Sciences 46, 1126–1141 (2007)
  • [31] I. Kataoka, “Local instant formulation of two-phase flow”, International Journal of Multiphase Flow 12 (5), 745–758 (1986)
  • [32] K.W. Oh, K. Lee, B. Ahn, and E.P. Furlani, “Design of pressure-driven microfluidic networks using electric circuit analogy”, Lab on a Chip 12 (3), 515–545 (2012)
  • [33] N.A. Mortensen, F. Okkels, and H. Bruus, “Reexamination of Hagen-Poiseuille flow: Shape dependence of the hydraulic resistance in microchannels”, Physical Review E 71 (5), 057301 (2005)
  • [34] K.C. Bhargava, B. Thompson, D. Iqbal, and N. Malmstadt, “Predicting the behavior of microfluidic circuits made from discrete elements”, Scientific Reports 5 (2015)
  • [35] D. Kim, N.C. Chesler, and D.J. Beebe, “A method for dynamic system characterization using hydraulic series resistance”, Lab on a Chip 6 (5), 639–644 (2006)
  • [36] S. Choi, M.G. Lee, and J.-K. Park, “Microfluidic parallel circuit for measurement of hydraulic resistance”, Biomicrofluidics 4 (3), 034110 (2010)
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b839bf04-50cb-4890-953c-25915d65d229
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.