PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Offset compensated baseline restoration and computationally efficient hybrid interpolation for the brain PET

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The acquisition of positron emission tomography (PET) pulses introduces artifacts and limits the performance of the scanner. To minimize these inadequacies, this work focuses on the design of an offset compensated digital baseline restorer (BLR) along with a two-stage hybrid interpolator. They respectively treat the incoming pulse offsets and limited temporal resolution and improve the scanner performance in terms of calculating depth of interactions and line of responses. The offset of incoming PET pulses is compensated by the BLR and then their interesting parts are selected. The selected signal portion is up-sampled with a hybrid interpolator. It is composed of an optimized weighted least-squares interpolator (WLSI) and a simplified linear interpolator. The processes of calibrating the WLSI coefficients and characterizing the BLR and the interpolator modules are described. The functionality of the proposed modules is verified with an experimental setup. Results have shown that the devised BLR effectively compensates a dynamic range of bipolar offsets. The signal selection process allows focusing only on the relevant signal part and avoids the unnecessary operations during the post-interpolation process. Additionally, the hybrid nature allows improving the signal temporal resolution with an appropriate precession at a reduced computational complexity compared to the mono-interpolationbased arithmetically complex counterparts. The component-level architectures of the BLR and the interpolator modules are also described. It promises an efficient integration of these modules in modern PET scanners while using standard and economical analog-to-digital converters and field-programmable gate arrays. It avoids the development of high-performance and expensive application-specific integrated circuits and results in a costeffective realization.
Rocznik
Strony
art. no. 20180031
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
autor
  • Effat University, Electrical and Computer Engineering Department, Jeddah, Saudi Arabia
Bibliografia
  • [1] Watanabe M, Saito A, Isobe T, Ote K, Yamada R, Moriya T, et al. Performance evaluation of a high-resolution brain PET scanner using fourlayer MPPC DOI detectors. Phys Med Biol 2017;62:7148.
  • [2] Gong K, Majewski S, Kinahan PE, Harrison RL, Elston BF, Manjeshwar R, et al. Designing a compact high performance brain PET scanner - simulation study. Phys Med Biol 2016;61:3681.
  • [3] Orrison WW, Lewine J, Sanders J, Hartshorne MF. Functional brain imaging. Elsevier Health Sciences, 2017.
  • [4] Putzu A, Valtorta S, Di Grigoli G, Haenggi M, Belloli S, Malgaroli A, et al. Regional differences in cerebral glucose metabolism after cardiac arrest and resuscitation in rats using [18F] FDG positron emission tomography and autoradiography. Neurocrit Care 2018;28:370-8.
  • [5] Kobayashi T, Aikata H, Honda F, Nakano N, Nakamura Y, Hatooka M, et al. Preoperative fluorine 18 fluorodeoxyglucose positron emission tomography/computed tomography for prediction of microvascular invasion in small hepatocellular carcinoma. J Comput Assist Tomogr 2016;40:524-30.
  • [6] Greve DN, Salat DH, Bowen SL, Izquierdo-Garcia D, Schultz AP, Catana C, et al. Different partial volume correction methods lead to different conclusions: an 18F-FDG-PET study of aging. Neuroimage 2016;132:334-43.
  • [7] González-Montoro A, Aguilar A, Cañizares G, Conde P, Hernández L, Vidal LF, et al. Performance study of a large monolithic LYSO PET detector with accurate photon DOI using retroreflector layers. IEEE Trans Radiat Plasma Med Sci 2017;1:229-37.
  • [8] Eriksson L, Melcher CL. Scintillators for PET and SPECT. In: Physics of PET and SPECT Imaging. CRC Press, 2017:65-84.
  • [9] Ronzhin A. High time-resolution photo-detectors for PET applications. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 2016;809:53-7.
  • [10] Slawomir S. Pi. A technical guide to silicon photomultipliers (SiPM) | Hamamatsu Photonics. Hamamatsu Corporation & New Jersey Institute of Technology, 2017.
  • [11] Doroud K, Rodriguez A, Williams MC, Zichichi A, Zuyeuski R. Comparative timing measurements of LYSO and LFS to achieve the best time resolution for TOF-PET. In: Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), November. IEEE, 2014:1-6.
  • [12] Qaisar SM. An automatic Peltier effect based MPPC gain regulation for brain-PET. In: Electrical and Computing Technologies and Applications (ICECTA), November, International Conference on. IEEE, 2017:1-6.
  • [13] Qaisar SM. A VHDL based interpolator and base line restorer for a brain-PET scanner. In: Electrical and Computing Technologies and Applications (ICECTA), November, International Conference on. IEEE, 2017:1-6.
  • [14] Yamamoto S, Imaizumi M, Watabe T, Watabe H, Kanai Y, Shimosegawa E, et al. Development of a Si-PM-based high-resolution PET system for small animals. Phys Med Biol 2010;55:5817.
  • [15] Korcyl G, Moskal P, Bednarski T, Białas P, Czerwiński E, Kapłon Ł, et al. Trigger-less and reconfigurable data acquisition system for positron emission tomography. Bio-Algorithms Med-Syst 2014;10:37-40.
  • [16] Pelgrom MJ. Analog-to-digital conversion. 1st ed. Springer Netherlands, 2010. ASIN: B00BWZ1U4M.
  • [17] Moskal P, Bednarski T, Białas P, Czerwiński E, Kapłon Ł, Kochanowski A, et al. A novel method based solely on field programmable gate array (FPGA) units enabling measurement of time and charge of analog signals in positron emission tomography (PET). Bio-Algorithms Med-Syst 2014;10:41-5.
  • [18] Fontaine R, Tetrault MA, Belanger F, Viscogliosi N, Himmich R, Michaud JB, et al. Real time digital signal processing implementation for an APD-based PET scanner with pho switch detectors. IEEE Trans Nucl Sci 2006;53:784-8.
  • [19] Pullia A, Geraci A, Ripamonti G. Quasi-optimum γ and X spectroscopy based on real-time digital techniques. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 2000;439:378-84.
  • [20] Li H, Wang C, Baghaei H, Zhang Y, Ramirez R, Liu S, et al. A new statistics-based online baseline restorer for a high count-rate fully digital system. IEEE Trans Nucl Sci 2010;57:550-5.
  • [21] Kawada Y, Yunoki A, Yamada T, Hino Y. Effect of time walk in the use of single channel analyzer/discriminator for saturated pulses in the 4πβ-γ coincidence experiments. Appl Radiat Isotopes 2016;109:369-73.
  • [22] Du J, Schmall JP, Judenhofer MS, Di K, Yang Y, Cherry SR. A time-walk correction method for PET detectors based on leading edge discriminators. IEEE Trans Radiat Plasma Med Sci 2017;1:385-90.
  • [23] Kafaee M, Moussavi-Zarandi A. Baseline restoration and pile-up correction based on bipolar cusp-like shaping for high-resolution radiation spectroscopy. J Korean Phys Soc 2016;68:960-4.
  • [24] Moskal P, ZońN, Bednarski T, Białas P, Czerwiński E, Gajos A, et al. A novel method for the line-of-response and time-of-flight reconstruction in TOF-PET detectors based on a library of synchronized model signals. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 2015;775:54-62.
  • [25] Ziskin V, Perticone D. U.S. Patent No. 9,239,303. U.S. Patent and Trademark Office, Washington, DC, 2016.
  • [26] Liksonov D, Qaisar SM. Method for calculating interaction time of gamma photon with scintillation crystal in sensor of positron emission tomography system, involves determining curve representing evolution of electrical signal by interpolation of sampling points. January 2013, FR 2983590.
  • [27] Braga LH, Gasparini L, Grant L, Henderson RK, Massari N, Perenzoni M, et al. (2014). A Fully Digital 8x16 SiPM Array for PET Applications With Per-Pixel TDCs and Real-Time Energy Output. IEEE J Solid-State Circuits 2014;49:301-14.
  • [28] Braga LH, Gasparini L, Stoppa D. A time of arrival estimator based on multiple timestamps for digital PET detectors. In: Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), October. IEEE, 2012:1250-2.
  • [29] Tetrault MA, Oliver JF, Bergeron M, Lecomte R, Fontaine R. Real time coincidence detection engine for high count rate timestamp based PET. IEEE Trans Nucl Sci 2010;57:117-24.
  • [30] Solf TJ, Fischer P. U.S. Patent No. 7,750,305. U.S. Patent and Trademark Office, Washington, DC, 2010.
  • [31] Frach T, Prescher G. U.S. Patent No. 9,405,024. U.S. Patent and Trademark Office, Washington, DC, 2016.
  • [32] Xie Q, Kao CM, Wang X, Guo N, Zhu C, Frisch H, et al. Potential advantages of digitally sampling scintillation pulses in timing determination in PET. In: Nuclear Science Symposium Conference Record, October, NSS’07. Vol. 6. IEEE, 2007;4271-4.
  • [33] Polycarpou I, Soultanidis G, Tsoumpas C. Synthesis of realistic simultaneous positron emission tomography and magnetic resonance imaging data. IEEE Trans Med Imaging 2018;37:703-11.
  • [34] Pałka M, Strzempek P, Korcyl G, Bednarski T, Niedźwiecki S, Białas P, et al. Multichannel FPGA based MVT system for high precision time (20 ps RMS) and charge measurement. J Instrum 2017;12:P08001.
  • [35] Saint-Gobain crystals physical properties of common inorganic scintillators. IEEE Trans Nucl Sci 2017;63:2471-7.
  • [36] Du J, Schmall JP, Yang Y, Di K, Roncali E, Mitchell GS, et al. Evaluation of Matrix9 silicon photomultiplier array for small-animal PET. Med Phys 2015:42:585-99.
  • [37] Kamrani E, Lesage F, Sawan M. Low-noise, high-gain transimpedance amplifier integrated with SiAPD for low-intensity near-infrared light detection. IEEE Sensors J 2014;14:258-69.
  • [38] Rivera NC, Seitz B. EP-1445: performance evaluation of scintillators for SiPM PET/MRI brain imaging. Radiother Oncol 2017;123:S771.
  • [39] Hanu AR, Prestwich WV, Byun SH. A data acquisition system for two-dimensional position sensitive micropattern gas detectors with delay-line readout. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 2015;780:33-9.
  • [40] AD9623, D. S. 12-bit, 170 MSPS/210 MSPS/250 MSPS, 1.8 V dual analog-to-digital converter (ADC).
  • [41] Qaisar SM, Yahiaoui R, Gharbi T. An efficient signal acquisition with an adaptive rate A/D conversion. In: IEEE, ICCAS’13, Kuala Lumpur, Malaysia, 2013.
  • [42] Golub GH, Ortega JM. Scientific computing and differential equations: an introduction to numerical methods. London: Academic Press Inc., 2014.
  • [43] Statistics, MATLAB and Machine Learning Toolbox Releaseand. 2016. Natick, MA, USA: The MathWorks Inc. Available at: http://www.mathworks.com.
  • [44] Sadrozinski HF, Wu J. Applications of field-programmable gate arrays in scientific research. USA: Taylor and Francis, 2016.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b83897d7-ae0d-45ca-96b3-f927e24198e2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.