PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Application of Plasma Actuator with Two Mesh Electrodes to Active Control of Boundary Layer at 50 Hz Power Supply

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Numerous studies are conducted to improve the flow in the boundary layer to ensure laminar flow and in particular to increase flight safety. A new solution used to improve the laminar flow is the plasma actuator. The classic configuration of DBD plasma actuators is commonly used with the asymmetric electrode system. The manuscript describes the results of tests with a plasma actuator. Experimental tests were carried out on the built model of the wing with the SD 7003 profile, a plasma actuator was mounted on the upper surface. In contrast to the commonly used solution with solid tape copper electrodes, the novelty in the described research in the manuscript is the use of a large GND electrode (covering 70% of the upper surface of the wing) and a HV mesh electrode. The use of a plasma actuator on the upper surface of the wing affects the air flow in the boundary layer as a result of air ionization. The tests were carried out for a supply voltage from V = 7.0 kV to 12 kV and Reynolds number, Re = 87500 to 240000, flow velocity during the tests in the tunnel was in the range of U = 5-15 m/s and the angle of attack α = 5 -15 degrees. On the basis of the results experimental tests, the percentage change in the lift coefficient was calculated for the switched on and off DBD system. The obtained results indicate a maximum 17% increase in the lift coefficient for the plasma actuator activated for air flow U = 5 m/s and angle of attack α = 5 degrees. In the remaining configurations, changes in the lift coefficient amounted to 4%.
Słowa kluczowe
Twórcy
  • University College of Enterprise and Administration in Lublin, ul. Bursaki 12, 20-150 Lublin, Poland
  • Faculty of Mechanical Engineering Lublin University of Technology Lublin, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
  • Faculty of Faculty of Technology Fundamentals Lublin University of Technology Lublin, ul. Nadbystrzycka 38, 20-618 Lublin, Poland
  • Faculty of Mechanical Engineering Lublin University of Technology Lublin, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
  • Faculty of Management, Lublin University of Technology, ul. Nadbystrzycka 38, 20-618 Lublin, Poland
Bibliografia
  • 1. Shimizu K., Mizuno Y., Blajan M. Basic Study on Flow Control by Using Plasma Actuator, IEEE Transactions on Industry Applications, 2015; 51(4): 3472–3478.
  • 2. Gnapowski E., Pytka J., Józwik J., Laskowski J., Michałowska J. Wind Tunnel Testing of Plasma Actuator with Two Mesh Electrodes to Boundary Layer Control at High Angle of Attack, Sensors, 2021; 21(2): 363.
  • 3. Yang Qi, Yan H., Jin Y., Ren C. Plasma Actuator Performance Driven by Dual-Power Supply Voltage-AC High Voltage Superimposed With Pulse Bias Voltage, IEEE Transactions on Plasma Science, 2017; 45(3): 412–422.
  • 4. Gnapowski S., Gnapowski E., Duda A., Inproving of the quality food for animals by pulsed power plasma discharge, Adv. Sci. Technol. Res. J., 2015; 9(27): 58–65.
  • 5. Deng X.T., Kong M.G. Frequency range of stable dielectric-barrier discharges in atmospheric He and N/sub 2/, 2004, IEEE Transactions on Plasma Science, 2004; 32(4): 1709–1715.
  • 6. Jiang L., Li Q., Zhu D., Attoui M., Deng Z., Tang J., Jiang J. Comparison of nanoparticle generation by two plasma techniques: Dielectric barrier discharge and spark discharge, Aerosol Science and Technology, 2017; 51(2): 206–213.
  • 7. Guangyin Z., Yinghong L., Hua L., Menghu H., Yun W. Flow separation control on swept wing with nanosecond pulse driven DBD plasma actuators. Chinese Journal of Aeronautics, 2015; 28(2): 368–376.
  • 8. Whalley R., Choi K. The starting vortex in quiescent air induced by dielectric-barrier-discharge plasma, Journal of Fluid Mechanics, 2012; 703: 192–203.
  • 9. Gnapowski E. Review of Selected Methods for Increasing the Aerodynamic Force of the Wing. Advances in Science and Technology Research Journal, 2019; 13(1): 60–67.
  • 10. Nishida H., Shiraishi T. Experimental Characterization of Dual-Grounded Tri-Electrode Plasma Actuator, AIAA Jurnal, 2015; 53(11): 3157–3166.
  • 11. Leroy A., Audier P., Podlinski J., Berendt A., Hong D., Mizeraczyk J. Enhancement of lift and drag performances of NACA0012 airfoil by multi-DBD plasma actuator with additional floating interelectrodes, International Symposium on Electrohydrodynamics, 2012.
  • 12. Gnapowski E. Effect of Mesh Electrodes Geometry on the Ozone Concentration in the Presence of Micanite Dielectric, Advances in Science and Technology Research Journal, 2018; 12(4): 76–80.
  • 13. Kogelschatz U., Eliasson B., Egli W. From ozone generators to at television screens: history and future potential of dielectric-barrier discharges, Pure Appl. Chem., 1999; 71(10): 1819–1828.
  • 14. Kim J., Kim S. J., Lee Y.N., Kim I. T., Cho, G., Discharge Characteristics and Plasma Erosion of Various Dielectric Materials in the Dielectric Barrier Discharges, Appl. Sci., 2018; 8: 1294.
  • 15. Rudolph P.K.C. High-Lift Systems on Commercial Subsonic Airliners. NASA Contractor Report, 1996; 4746.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b837e922-5af0-4a79-9ba9-a6048da28512
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.