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Abstract: The presented systems with magnetically coupled windings are solved with 
the finite element method. If the issue of voltage supply is analyzed, a system of linear 
equations with a partially skew-symmetric sparse matrix is obtained. Iterative methods 
used to solve a system of equations are particularly effective for symmetric matrices. Re-
sultant equations can be reduced to this symmetrical form by using the method known 
from the literature [1]. The ratio of the maximum to the minimum eigenvalue of the main 
matrix of this circuit, which is the condition number, is however very high. This means 
that the problem is ill-conditioned and leads to a very long iterative solution process. The 
method presented in the article allows for a direct solution of a system of equations on its 
part, corresponding to high eigenvalues of the system matrix. The remaining part of the 
system of equations is solved by iterative methods. This part has much better condition 
number, and therefore the computational process is fast. The proposed iterative process 
depends on multiplication of a sparse matrix by vectors. It is not necessary (and possible) 
to store the entire matrix. This is especially important for larger sizes of a matrix. 
Key words: magnetic field-circuital problem, condition number, iterative method 

 
 

1. Introduction 

 
In many problems a large linear system of algebraic equations of the form (1) must be 

solved in the following way: 

  [ ] [ ] bxAresbxA −⋅⋅ =;= , (1) 

where: b  is a known vector, [A] is a square, symmetrical, positive definite n×n  matrix, res  
is the error of the x  solution.  

We meet often in reality with the issue of this form, e.g. with boundary problems of partial 
differential equations of elliptic type, when designing a network, trusses, etc. Due to these 
issues the dimension n  is so large that the overall number of elements in the matrix n2 greatly 
exceeds the capabilities of a digital machine’s memory.  

Therefore, one can use the special form of the matrix [A], which is usually a sparse matrix 
[1, 2]. The efficient iterative methods of solving problems of type (1) were developed. The 
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best of these methods, e.g. a Chebyshev method requires certain additional information about 
the spectrum of the matrix [A] [2, 3].  

The minimum information is the knowledge of the smallest possible range containing the 
spectrum (eigenvalues) of the matrix [A]. This information is not always available. On the 
other hand, there are methods like e.g. the conjugate gradient method or minimal residual 
method, which do not require any information about the spectrum of the matrix [A].  

These methods, however, are unstable. What is noteworthy is an idea to combine two 
methods: the Chebyshev method with the minimal residual method [2, 3]. The essence of this 
combination is alternating the work of these methods. The Chebyshev method reduces errors 
of the solution x

r
 of the system (1) for high eigenvalues of the matrix [A]. The minimal 

residual method reduces errors of the solution corresponding with small eigenvalues of the 
matrix [A]. As soon as the minimal residual method loses stability, the error norm, i.e. the 
norm of the residuum: 

  [ ] bxAres −⋅=  (2) 

is enlarged. 
Then the stable Chebyshev method that reduces errors associated with the upper half of the 

spectrum of the matrix [A] is executed [4]. The greatest eigenvalue of maxλ  is usually easy to 
estimate, e.g. using the Gershgorin theorem [5], or by adopting any norm of the matrix [A] 
corresponding to the vector norm. 

It is assumed that the Chebyshev method is intended to reduce errors of a solution corres-
ponding to the eigenvalues from the range of  

 ⎥⎦
⎤

⎢⎣
⎡

maxmax λ
2
1λ , .  

The alternative use of Chebyshev methods and the minimal residual method [3, 4] always 
allows to obtain a solution of the symmetrical system of Equations (1).   

The essence of the proposal included in this article is to replace the Chebyshev method by 
a direct solution (i.e. not iterative). This step resets the errors associated with the upper part of 
the spectrum of the matrix [A] in a single execution. Further reduction of residuum will be 
performed by, also previously initiated, the iterative minimal residual method. 

A part of the solution x  associated with smaller eigenvalues of the spectrum of the 
matrix [A] will be improved with this iterative method. The ratio of the maximum eigenvalue 
to the minimum eigenvalue of this spectrum part will be lower than in full spectrum of the 
matrix [A]. This means better conditioning of the minimal residual method and a much lower 
number of iterations needed. 

 
2. The finite element method equations for the systems with magnetically 

coupled windings 
 

The magnetic field is expressed by a vector potential  
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∑ ⋅

i
iA= iNA ,

     

where iN  represents the edge basis functions. Scalar potential is expressed by nodal basis 
functions iN  as 

 
∑ ⋅

i
iiN= φφ  

 

The current density of the j -th winding with the current i , i.e. jJ  is expressed by the 
vector introduced by jT  as ji= ⋅)rot( jj TJ  [1, 6, 9]. The vector jT  is stretched on a j-th 
winding. By its means, one can write the magnetic flux coupled with j-th winding:  

   ( )∫ ∫ ⋅⋅
V V

j V=V= drotdΨ ATBT jj , (3) 

where B  is the magnetic induction.  
Voltage equations for windings can be written (after integrating) as: 

   f…=j;tu=tiR+iL+
t

j

t

jjjj 1,2,ddΨ
00

σ ∫∫ , (4) 

where jLσ  is the leakage inductance of the j -th winding, jR  is its resistance, ju  is the sup-
plying voltage, and f  is a number of phases (of windings).  

In 2D calculations, leakage inductance of the winding jLσ  should include the end-
winding and mains leakage inductance. With the use of implicit methods of solving equations, 

tR+jL j d2/σ  should be considered as leakage inductance, where td  is the integration step. 
In 3D calculations, the end-windings inductance is not included because it is included directly 
by the finite element method. With v  the inverse of magnetic permeability and with γ  elec-
trical conductivity of metal sheets are determined. Applying the Galerkin weak formulation 
[1, 9] a set of equations of the finite element method for systems with magnetically coupled 
windings can be written [1, 6, 9] as: 
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where:  
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 [ ] ∫∫∫ ⋅
V

V= drotrot jiij NNR ,         [ ] ∫∫∫ ⋅
V

ji VNN= dgradgrad
ij

G , 

 [ ] ∫∫∫ ⋅
V

V= djiij NNC ,         [ ] ∫∫∫ ⋅
V

j VN= dgradiij ND , 

 [ ] ∫∫∫ ⋅
V

V= drot0 jiij TNT , 

where: i  is the line number, j  is the number of windings, and t  is the matrix transposition. 
In conductive areas, where the electrical conductivity 0γ ≠  the scalar potentials φ  are un-

knowns. 
Partial skew-symmetry is related to winding currents, that act as a vector of unknowns 

[ ].3X  This is confirmed by Maxwell’s equations: 

  
t

=;=
∂
∂− BEJH rotrot . (6) 

The resulting Equation (5) with a sparse matrix, due to the large size, should be solved by 
iterative methods. The symmetry of the matrix radically quickens the solution of iterative me-
thods. It is therefore necessary to bring the system (5) to a symmetrical form [1].  

The system of Equations (5) can be written as: 
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1
12 X

X
X .  (7) 

By reducing the unknowns [ ]3X  from the system, it can be reduced to a symmetrical form of: 

  ][][][][ 1
1

1 P=PLT+P=XTLT+M t
2σ0120σ0 ⋅⋅⋅⋅⋅ −−  (8) 

and  

  ][ ][][ 1202
1
σ3 XTPL=X t ⋅−− . (9) 

The system of Equations (8) is symmetrical, because the ][ σL  matrix is symmetrical. The 
main matrix of the system includes components created by the finite element method intro-
duced by the matrix [ ]M . It also includes the components associated with 1

σ
−][L  that have 

high values. Therefore, this matrix spectrum is wide. The ratio of the highest to the lowest 
eigenvalue, i.e. the condition number is large. This implies a large number of iterations at 
which the stability of the solution may be lost. It is possible, however, to extract earlier the 
solution's components associated with large eigenvalues. They are introduced into the system 
(8) by the element 1

σ
−][L . For this purpose, a direct method is used. It solves a system of 

small dimensions, because the ][ σL  matrix has a size equal to the f  number of windings.  
This direct method replaces the previously described Chebyshev iterations. This method is 

the essence of the presented article.  
Other components of the solution, corresponding to smaller eigenvalues, are obtained by 

iterative methods, e.g. by the minimal residual method. They are much faster after the elimi-
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nation of the components corresponding to large eigenvalues. They work in a smaller range of 
the spectrum, so conditioning is much better. Despite a series of additional operations related 
therein and large dimension of the issue, iterative calculations can be carried out using the 
sparse matrix technique. 

 
 
3. Improvement of the matrix condition number of the system with 

magnetically coupled windings 
 
The reduction of matrix spectrum of the magnetic system will be exemplified by the 

system solved with circuital methods. The principle of the transformation is the same as for  
a system solved with the finite element method (5). However, due to smaller dimensions of the 
equations it is easier to observe the results of transformations. The tested system is shown in 
Fig. 1. 

 

 
Fig. 1. System with three magnetically coupled windings (g = 11, s = 7, r = 5) 

 
An exemplary system has g = 11 magnetic cores with the Mgi magnetic fluxes, (i = 1 : 11). 

Magnetic reluctance (resistance) of cores is marked by Ri, (i = 1 : 11).  
The magnetic system has r = 5 nodes with magnetic potentials Vi, (i = 1 : 5). This means 

that the system of equations has s = g – (r – 1) = 7 independent loops (degrees of freedom). It 
will be solved by the loop flux method.  

The loop fluxes Moi (i = 1 : 7) are introduced. The loops are indicated in Fig. 1 as Oi, (i = 1 : 7). 
Connections of cores are described by the connection matrix pol(s = 7, g = 11). From the 
fluxes of loops MO one can obtain fluxes in the branches Mg. 

  [ ] [ ] [ ]O
t

g = Φ⋅polΦ , (10) 
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where the connection matrix [pol] is: 
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Magnetic reluctances of cores form a square matrix of the values established on the dia-
gonal are: 

   [ ]789.1806.2497.1586.2934.1383.384.17011.2036.1408.2706.2)(diag =gR .  (12) 

On the magnetic cores with numbers 4, 9 and 8 windings were placed with the number of 
coils of respectively zw1 = 2, zw2 = 1, zw3 = 4. Therefore magnetomotive forces can be written 
as: 114Θ izw= ⋅ , 229Θ izw= ⋅ , 338Θ izw= ⋅ , where 1i , 2i , 3i  are the winding currents. The 
remaining cores have specific electric loading equal to zero. Creating a winding number 
matrix [Zw] with dimension(g H f)  is: 

  

t
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1

Zw . (13) 

The magnetic voltages on cores can be written as: 

     [ ] [ ] [ ] [ ] [ ]iZwRE ggg ⋅−⋅= Φ , (14) 

where [i] = [ 1i , 2i , 3i ]t and 1i , 2i , 3i  are the currents flowing through the windings. 
The equations of magnetic tensions of the circuit can be written as: 

  [ ] [ ] [ ]0=gEpol ⋅   (15) 

At the same time, voltage equations for windings (equivalent to Equation [4]) can be writ-
ten (after integrating) as: 

  ,][
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t Φσ  (16) 

To Equations (14) and (16) we incorporate Equation (10) that expresses the branch fluxes  
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[Mg] through the loop fluxes [Mo]. Then, from the Equation (16) we calculate currents [i] and 
insert them into the Equation (14). What we get from Equation (15) is: 

  
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]{ } [ ]

[ ] [ ] [ ] [ ] [ ]…=

=+ ttt

PELZwpol

polZwLZwpolpolRpol

Cσ

oσg

⋅⋅⋅=

⋅⋅⋅⋅⋅⋅

−

−

1

1 Φ
 (17) 

and: 

   [ ] [ ] [ ] [ ] [ ] [ ]{ }.1
o

tt
Cσ polZwELi Φ⋅⋅−⋅−=  (18) 

Equations (17) and (18) are equivalent to Equations (8) and (9). Equation (17) as well as 
(8) have a symmetric matrix, obtained after reduction of the vector of currents [i]. 

Further considerations will be carried out with the denotations from the Equations (8) and 
(9), that correspond to equations (17, 18): 

  
.][][][

,][][][][

ZwpolT

polRpolM t
g

⋅=

⋅⋅=

0
 (19) 

The matrix [T0] has dimensions f×s  ( 7=s , 3=f ). The dimension s  is the number of 
independent loops from the system in Fig. 1. At the same time it is the number of unknowns of 
the loop flux method [x] = [Mo]. When calculating with the finite elements method there is a 
very large number of unknowns in this method, i.e. [X12] from the Equation (7). It should be 
noted that the columns of the matrix [T0] from equations (5, 7) and (19) are not always 
independent from each other, i.e. they are not always mutually orthogonal. Using the Gram-
Schmidt method of orthogonalization [2, 4] one can achieve mutual orthogonality of matrix 
columns [T0]. 

   [ ] [ ] [ ]pw=T ⋅0 ,  while  [ ] [ ] [ ] .f
t I=ww ⋅   (20) 

The matrix [w] includes f = 3 mutually orthogonal columns. The matrix [p ] is a permu-
tation matrix with f H f dimensions, and [I] f  is the identity matrix.  

The main matrix of the system (17) can be written as:  

   [ ] [ ] [ ] [ ] [ ] [ ] [ ]tt1 wpLpw+M=mgl ⋅⋅⋅⋅ −
σ . (21) 

We introduce a denotation: 

  [ ] [ ] [ ] [ ] t1 pLp=λ ⋅⋅ −
σ , (22) 

i.e. 

  [ ] [ ] [ ] [ ] [ ] twλw+M=mgl ⋅⋅ . (23) 

The matrix [LF] has on its diagonal leakage inductance of windings, which were adopted 
as: 
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 ( ) [ ]0.00130.00180.004diag =σL . (24) 

One can compare the eigenvalues of the loop flux matrix [M] and the main matrix [mgl] of 
the system (17) (arranged in rows): 

  
[ ] [ ]
[ ] [ ]242943.201686.822228.492271.60638.275934.0

683.57387.116157.97198.57887.46748.169783.0

→

→

mgl

M
. (25) 

It can be seen that the ratio of the largest eigenvalue to the smallest one i.e. the condition 
number has been enlarged in the matrix [mgl], after the introduction of windings and leakage 
inductance [LF] into the system: 

  
75934.0

2429431994
69783.0

684.5766.82 =→= . (26) 

This implies a huge inconvenience in iterative calculations and threatens their stability. 
This occurs despite the fact, that the matrix [mgl] is symmetric. The element which caused the 
deterioration of conditioning [8] is related to vectors which are columns of the matrix [w]. To 
improve the condition number, one must separate the elements of the solution [x] = [Mo] of the 
system (17), associated with these vectors contained in the columns of the matrix [w]. This is 
the essence of the method presented in this article.   

Therefore, we assume that the solution [x] = [M] of the system (17) can be written as: 

  [ ] [ ] [ ] [ ]yxwx += 0⋅ . (27) 

We assume that the first part of the solution [w] @ [x0] belongs to the subspace created by 
vectors, which are columns in the matrix [w]. These vectors create the vector space 1Ω . It has 
a small dimension 3=f . The entire space which dimension is 7=s , is denoted as Ω . It con-
tains the solution [x]. We assume that the part of the solution, denoted as [y] is orthogonal to 
the subspace 1Ω  and belongs to the subspace 12 Ω\ΩΩ = : 

   [ ] [ ] [ ] 30 =f
t =yw ⋅ . (28) 

For further calculations we assume that the vector [P] of the right side of the Equation (17) 
is: 

  [ ] [ ] t= 9.1574181545114960085995.19.571733010 −−P . (29) 

In order to calculate the vector [x0] from the formula (27) we substitute the solution [x] from 
the formula (27) into Equation (17) and multiply the resulting equation from the left side by [w]t.  

  [ ] [ ] [ ] [ ]{ } [ ] [ ] [ ] [ ] [ ] [ ]yMwPwxλwMw tt
0

t ⋅⋅−⋅⋅⋅⋅ =+ . (30) 

Denoting: 

  [ ] [ ] [ ] [ ] [ ]λwMwM t +⋅⋅=0 , (31) 

we have: 
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  [ ] [ ] [ ] [ ]
[ ]

[ ] [ ] [ ]
[ ]

[ ]yMwMPwMx tt ⋅⋅⋅−⋅⋅= −−

444 3444 2144 344 21
00

1

00

1

yx

000 . (32) 

Due to the size of the vector [x0] equal to f = 3, the above calculation is fast and carried out 
by the non-iterative method (direct). The vector [x0] from the formula (32) is substituted to the 
formula (27), on [ ]x , and then to the Equation (17). The purpose is to calculate the vector [y]. 
This way we obtain: 

  
[ ] [ ] [ ] [ ] [ ] [ ]( ) [ ] [ ] [ ]( ) [ ] [ ] [ ]{
[ ] [ ]( )} [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]bymacPwMwmglPyMw

MλwMwMwMwλwM

tt

t

=⋅⇔⋅⋅⋅⋅−=⋅⋅⋅

⋅⋅⋅−⋅⋅⋅⋅−⋅⋅+

−

−−

1
0

1
0

1
0

t

. (33) 

This is a linear Equation (1). Due to its large dimensions as for the finite element method, 
it should be solved by iterative methods. In the case of the finite element method, the 
calculation of the residue res  from the formula (2) for this equation involves operations on 
sparse matrices which are multiplied by vectors. Therefore, it is fast.  

The example considered in Fig. 1 has small dimensions. Therefore one can compare the 
results of the presented method and direct calculations. 

The results of direct calculations [x] = [Mo] from the Equation (17) are applied to calculate 
the vector [y] by separating from [x] the components that belong to the subspace 2Ω . In order 
to do this, the solution [x] should be multiplied by the matrix [U].  

  [ ] ( ) [ ] [ ] [ ] [ ] [ ]xU=y;ww=U t ⋅⋅−seye , (34) 

where ( )seye  is the identity matrix of dimensions 7=s . The vector [y] calculated in this way 
is used for comparison with the vector [y] calculated from Equation (33). Similarly, knowing 
[y] one can calculate [xo] with (32).  

It can be compared with the results [x] of a directly solved Equation (17) by means of the 
multiplication: 

  [ ] [ ] [ ]xw=x t ⋅0 . (35) 

Such verification is only possible thanks to small dimensions of the example considered in 
Fig. 1. 

The matrix [mac] of the equation system (33) is not symmetrical. The missing element  
[dod] of its symmetrization is the transposition of the last component of the matrix [mac] in 
the formula (33): 

  [ ] [ ] [ ] [ ] [ ] [ ] t1 wMwM=dod ⋅⋅⋅⋅− − λ0 . (36) 

In the Equation (33) this element is multiplied by a vector of unknowns [y]. Due to the 
assumption (28), the vector [y] belongs to the subspace 2Ω . In the same way also: 

  [ ] [ ] [ ] 7=s=ydod 0⋅ . (37) 
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Therefore, an additional element of [dod] does not contribute to the residuum res  (2) of 
the system of Equations (33) and therefore may be abandoned. After abandoning the element 
[dod], despite the asymmetry, the iterative methods can be used, e.g. the minimal residual 
method, suitable for symmetrical systems. This accelerates calculation process considerably.  

The right side [b] of the system (33) also belongs to the subspace S2. It can be seen after 
multiplying the left side by [w]t: 

  [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ]

[ ] [ ] [ ] [ ] ft1

M

ttt PwMwmglwPw=bw 00

0

=⋅⋅⋅⋅⋅−⋅⋅ −
44 344 21

. (38) 

Taking into account Equations (23) and (31) we obtain a confirmation of the formula (38). 
During the iterative process of solving the system of Equations (33), both the solution [y] 

and the vector of residuals (2) should belong to the subspace 2Ω , thus should be orthogonal to 
the vector-columns of the matrix [w]. However, due to rounding errors, there may occur com-
ponents that belong to the subspace 1Ω . These errors will increase, because when calculating 
the residuum (2) they are multiplied by large eigenvalues of the matrix [mac], that correspond 
to the subspace 1Ω . 

They can cause a loss of stability of the minimal residual method, which manifests itself in 
a normal increase of the residue during iteration. In order to counteract, these components 
must be removed during iteration. For this purpose, the substitution by means of the matrix 
[ ]U  from the formula (34) should be performed during iteration: 

  [ ] [ ] [ ]yUy ⋅=: . (39) 

Removing these components corresponds to the Chebyshev iterative method, carried out 
on error vectors corresponding to large eigenvalues. This was previously described as the 
combination of the Chebyshev method and the minimal residual method. However, it is much 
easier and faster.  

In order to prove the assumption (28) of the vector [y] belonging to the space 2Ω , one 
must prove that the solution of the system (33) has this property.  

For this purpose, we multiply the left side of the equation (33) by [w]t. We use the Equa-
tions (38) and (31). We also use mutual orthogonality of the matrix [w] columns (20).  

  [ ] [ ] [ ]( ) [ ] [ ] [ ] [ ] [ ]( ) [ ] )28(equationλ ⇒=⋅⋅⇒⋅⋅⋅ f
ttt 0ywbw=ymacw . (40) 

The matrix [mac] of the system of Equations (33) is asymmetric. This does not prevent the 
use of iterative methods designed for symmetric systems to solve this system. This is because 
the solution [ ]y  of this system belongs to the subspace 2Ω , and the symmetry defect [dod] 
(36) of this matrix [mac] relates to the subspace 1Ω . The subspace 1Ω  is disjoint with the 
subspace 2Ω . These dependences can be presented by placing values and eigenvectors of 
these matrices in Tables 1 and 2. 

As illustrated in Tables 1 and 2, the matrix [mac] is taken from the Equation (33), the 
supplementary matrix to the symmetry [dod] is taken from the formula (36). When comparing 
both tables it can be seen that the subspace 2Ω , to which the solution [y] of the system (33) 
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belongs, is identical for each matrix. They contain the same eigenvalues and corresponding 
(placed in columns under the eigenvalues) eigenvectors. The condition number of the system 
(33) for calculations [y] in subspace 2Ω  amounts 49.232/0.75934 = 65. The subspace 1Ω , 
created by vectors that are the columns of the matrix [w] from the Equation (20) for both the 
matrix of Table 1 and 2 has slightly different eigenvalues and eigenvectors. But in both cases it 
is the same subspace 1Ω , obtained as 21 Ω\ΩΩ = . 

 
Table 1. Eigenvalues (in the first row) and, below them in the columns, eigenvectors of asymmetrical 

matrix [mac] from the system of Equations (33) 

2Ω  1Ω  

0.75934 2.0638 6.2271 49.232 815.33 2000 24285 
!0.33253 !0.016104 0.47169 0.0013036 0.42165 !1.6865e-04 !0.69871 
!0.47931 0.51316 !0.32214 0.63495 !0.0013169 0.006042 6.9107e-05 
!0.4682 !0.25424 !0.33787 !0.31937 0.001261 0.70431 !2.7257e-05 
!0.4682 !0.25424 !0.33787 !0.31937 0.001261 !0.70984 !2.7257e-05 
!0.33253 !0.016104 0.47169 0.0013036 0.39294 !1.6865e-04 0.71522 
!0.33253 !0.016104 0.47169 0.0013036 !0.81719 !1.6865e-04 !0.016606 
!0.010494 0.77886 0.020925 !0.62677 7.9325e-05 !0.0060384 1.7218e-07 

 
Table 2. Eigenvalues (in first row) and, below them in the columns, eigenvectors of symmetrical matrix 

[mac] + [dod] 

2Ω  1Ω  

0.75934 2.0638 6.2271 49.232 807.86 1984 24275 
0.33253 !0.016104 !0.47169 0.0013036 0.42251 !9.1128e-04 0.69868 
0.47931 0.51316 0.32214 0.63495 4.336e-16 !4.1949e-17 2.0375e-17 
0.4682 !0.25424 0.33787 !0.31937 0.0014722 0.70711 3.1981e-05 
0.4682 !0.25424 0.33787 !0.31937 !0.0014722 !0.70711 !3.1981e-05 
0.33253 !0.016104 !0.47169 0.0013036 0.39382 !7.876e-04 !0.71524 
0.33253 !0.016104 0.47169 0.0013036 !0.81633 0.0016989 0.016563 
0.010494 0.77886 !0.020925 !0.62677 !7.9445e-18 !6.4153e-19 2.3809e-20 

 
The scheme shown in Fig. 1, has small dimensions of the system of Equations (33), so 

direct methods should rather be used to solve it. The equations of type (33) obtained from the 
finite element method, however, have large dimensions and must be solved with the use of 
iterative methods, operating in the subspace 2Ω . 

 

4. Conclusions 

Systems with magnetically coupled windings solved with the finite element method have 
an ill-conditioned skew-symmetric matrix [13]. The method proposed in the article is based on 
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direct solving of a system with large eigenvalues of the problem. In this way the spectrum 
decreases (spectrum of eigenvalues), to the remaining components of the solution. This sim-
plifies and accelerates the iterative process of obtaining the remaining components of the 
solution. A condition number understood as the ratio of the largest and smallest eigenvalues 
for the iterative method is therefore significantly improved. This is particularly important with 
a very large number of unknowns of the problem. 

The proposed method was exemplified with the magnetic circuit with windings, solved by 
a circuital method. Due to small dimensions one could observe numerical effects of individual 
steps of the algorithm.  

The application of the presented algorithm in the finite element method was performed in 
[6-8, 14]. The 3-column autotransformer with five windings on each column was investigated. 
Mono-harmonic calculations were performed for the given pulsations on complex numbers. 
An autotransformer impedance matrix was created. Having found eigenvalues and eigenvec-
tors, the autotransformer inductance was identified [6-8].  

It should be underlined that in space 1Ω , solved with direct methods, there are not only the 
effects of the leakage inductance (including inductance in end winding connections in 2D 
calculations), of external connections [LF], but also magnetic fluxes, calculated with the finite 
element method. They seem to be “selected” using vectors-columns of the matrix [w]. It is 
evidenced by the formula (31) of matrix [M0]. Those chosen, additional components are equal 
to [w]t @ [M] @ [w]. 
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