Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we introduce a shrinking projection method of an inertial type with self-adaptive step size for finding a common element of the set of solutions of a split generalized equilibrium problem and the set of common fixed points of a countable family of nonexpansive multivalued mappings in real Hilbert spaces. The self-adaptive step size incorporated helps to overcome the difficulty of having to compute the operator norm, while the inertial term accelerates the rate of convergence of the proposed algorithm. Under standard and mild conditions, we prove a strong convergence theorem for the problems under consideration and obtain some consequent results. Finally, we apply our result to solve split mixed variational inequality and split minimization problems, and we present numerical examples to illustrate the efficiency of our algorithm in comparison with other existing algorithms. Our results complement and generalize several other results in this direction in the current literature.
Wydawca
Czasopismo
Rocznik
Tom
Strony
47--67
Opis fizyczny
Bibliogr. 55 poz., rys., tab.
Twórcy
autor
- School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa
autor
- School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa
autor
- School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa
autor
- School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa
Bibliografia
- [1] L. O. Jolaoso, T. O. Alakoya, A. Taiwo, and O. T. Mewomo, Inertial extragradient method via viscosity approximation approach for solving equilibrium problem in Hilbert space, Optimization 70(2021), no. 2, 387–412, DOI: https://doi.org/10.1080/02331934.2020.1716752.
- [2] S. Suantai and P. Cholamjiak, Algorithms for solving generalize equilibrium problems and fixed points of nonexpansive semigroups in Hilbert spaces, Optimization 63(2014), no. 5, 799–815, DOI: https://doi.org/10.1080/02331934.2012.684355.
- [3] T. O. Alakoya, A. Taiwo, O. T. Mewomo, and Y. J. Cho, An iterative algorithm for solving variational inequality, generalized mixed equilibrium, convex minimization and zeros problems for a class of nonexpansive-type mappings, Ann. Univ. Ferrara Sez. VII Sci. Mat.(2021), DOI: https://doi.org/10.1007/s11565-020-00354-2.
- [4] T. O. Alakoya, L. O. Jolaoso, and O. T. Mewomo, A general iterative method for finding common fixed point of finite family of demicontractive mappings with accretive variational inequality problems in Banach spaces, Nonlinear Stud. 27(2020),no. 1, 1–24.
- [5] Y. Censor, A. Gibali, and S. Reich, The subgradient extragradient method for solving variational inequalities in Hilbert space, J. Optim. Theory Appl. 148(2011), no. 2, 318–335.
- [6] P. Cholamjiak and S. Suantai, Iterative methods for solving equilibrium problems, variational inequalities and fixed points of nonexpansive semigroups, J. Glob. Optim. 57(2013), 1277–1297.
- [7] D. V. Hieu, L. D. Muu, and P. K. Anh, Parallel hybrid extragradient methods for pseudomotone equilibrium problems and nonexpansive mappings, Numer. Algorithms 73(2016), 197–217.
- [8] C. Izuchukwu, G. N. Ogwo, and O. T. Mewomo, An inertial method for solving generalized split feasibility problems over the solution set of monotone variational inclusions, Optimization (2020), DOI: https://doi.org/10.1080/02331934.2020.1808648.
- [9] T. O. Alakoya, L. O. Jolaoso, and O. T. Mewomo, Strong convergence theorems for finite families of pseudomonotone equilibrium and fixed point problems in Banach spaces, Afr. Mat. (2021), DOI: https://doi.org/10.1007/s13370-020-00869-z.
- [10] L. O. Jolaoso, A. Taiwo, T. O. Alakoya, and O. T. Mewomo, A unified algorithm for solving variational inequality and fixed point problems with application to the split equality problem, Comput. Appl. Math. 39(2020), 38, DOI: https://doi.org/10.1007/s40314-019-1014-2.
- [11] L. O. Jolaoso, A. Taiwo, T. O. Alakoya, and O. T. Mewomo, Strong convergence theorem for solving pseudo-monotone variational inequality problem using projection method in a reflexive Banach space, J. Optim. Theory Appl. 185(2020), no. 3, 744–766.
- [12] G. N. Ogwo, C. Izuchukwu, K. O. Aremu, and O. T. Mewomo, A viscosity iterative algorithm for a family of monotonne inclusion problems in an Hadamard space, Bull. Belg. Math. Soc. Simon Stevin 27(2020), 127–152.
- [13] A. O.-E. Owolabi, T. O. Alakoya, A. Taiwo, and O. T. Mewomo, A new inertial-projection algorithm for approximating common solution of variational inequality and fixed point problems of multivalued mappings, Numer. Algebra Control Optim. (2021), DOI: https://doi.org/10.3934/naco.2021004.
- [14] A. Taiwo, A. O.-E. Owolabi, L. O. Jolaoso, O. T. Mewomo, and A. Gibali, A new approximation scheme for solving various split inverse problems, Afr. Mat. (2020), DOI: https://doi.org/10.1007/s13370-020-00832-y.
- [15] A. Taiwo, T. O. Alakoya, and O. T. Mewomo, Halpern-type iterative process for solving split common fixed point and monotone variational inclusion problem between Banach spaces, Numer. Algorithms 86(2020), 1359–1389, DOI: https://doi.org/10.1007/s11075-020-00937-2.
- [16] A. Taiwo, L. O. Jolaoso, and O. T. Mewomo, Inertial-type algorithm for solving split common fixed-point problem in Banach spaces, J. Sci. Comput. 86(2020), 12, DOI: https://doi.org/10.1007/s10915-020-01385-9.
- [17] A. Taiwo, L. O. Jolaoso, O. T. Mewomo, and A. Gibali, On generalized mixed equilibrium problem with alpha-beta-eta bifunction and mu-tau monotone mapping, J. Nonlinear Convex Anal. 21(2020), no. 6, 1381–1401.
- [18] A. Taiwo, T. O. Alakoya, and O. T. Mewomo, Strong convergence theorem for solving equilibrium problem and fixed point ofrelatively nonexpansive multi-valued mappings in a Banach space with applications, Asian-Eur. J. Math. (2020),DOI: https://doi.org/10.1142/S1793557121501370.
- [19] K. R. Kazmi and S. H. Rizvi, Iterative approximation of a common solution of a split generalized equilibrium problem and a fixed point problem for nonexpansive semigroup, Math. Sci. (Springer) 7(2013), 1.
- [20] H. Iiduka, Fixed point optimization algorithm and its application to network bandwidth allocation, J. Comp. App. Math. 236(2012), 1733–1742.
- [21] C. Luo, H. Ji, and Y. Li, Utility-based multi-service bandwidth allocation in the 4G heterogeneous wireless networks, IEEE Wireless Communication and Networking Conference, 2009, DOI: https://doi.org/10.1109/WCNC.2009.4918017.
- [22] S. Suantai, P. Cholamjiak, Y. J. Cho, and W. Cholamjiak, On solving split equilibrium problems and fixed point problems of nonspreading multi-valued mappings in Hilbert spaces, Fixed Point Theory Appl. 2016(2016), 35.
- [23] H. H. Bauschke and P. L. Combettes, A weak-to-strong convergence principle for Fejer-monotone methods in Hilbert spaces, Math. Oper. Res. 26(2001), no. 2, 248–264.
- [24] W. Takahashi, Y. Takeuchi, and R. Kubota, Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl. 341(2008), 276–286.
- [25] Y. Kimura, Convergence of a sequence of sets in a Hadamard space and the shrinking projection method for a real Hilbert ball, Abstr. Appl. Anal. 2010(2010), 582475, DOI: https://doi.org/10.1155/2010/582475.
- [26] W. Phuengrattana and K. Lerkchaiyaphum, On solving the split generalized equilibrium problem and the fixed point problem for a countable family of nonexpansive multivalued mappings, Fixed Point Theory Appl. 2018(2018), 6, DOI: https://doi.org/10.1186/s13663-018-0631-6.
- [27] B. T. Polyak, Some methods of speeding up the convergence of iterative methods, Zh. Vychisl. Mat. Mat. Fiz. 4(1964), 1–17.
- [28] T. O. Alakoya, L. O. Jolaoso, and O. T. Mewomo, Modified inertial subgradient extragradient method with self adaptive stepsize for solving monotone variational inequality and fixed point problems, Optimization 70(2020), no. 3, 545–574, DOI: https://doi.org/10.1080/02331934.2020.1723586.
- [29] T. O. Alakoya, L. O. Jolaoso, and O. T. Mewomo, Two modifications of the inertial Tseng extragradient method with self-adaptive step size for solving monotone variational inequality problems, Demonstr. Math. 53(2020), 208–224,DOI: https://doi.org/10.1515/dema-2020-0013.
- [30] P. Cholamjiak and Y. Shehu, Inertial forward-backward splitting method in Banach spaces with application to compressed sensing, Appl. Math. 64(2019), 409–435.
- [31] Q. Dong, D. Jiang, P. Cholamjiak, and Y. Shehu, A strong convergence result involving an inertial forward-backward algorithm for monotone inclusions, J. Fixed Point Theory Appl. 19(2017), 3097–3118, DOI: https://doi.org/10.1007/s11784-017-0472-7.
- [32] A. Gibali, L. O. Jolaoso, O. T. Mewomo, and A. Taiwo, Fast and simple Bregman projection methods for solving variational inequalities and related problems in Banach spaces, Results Math. 75(2020), 179, DOI: https://doi.org/10.1007/s00025-020-01306-0.
- [33] E. C Godwin, C. Izuchukwu, and O. T. Mewomo, An inertial extrapolation method for solving generalized split feasibility problems in real Hilbert spaces, Boll. Unione Mat. Ital. (2021), DOI: https://doi.org/10.1007/s40574-020-00272-3.
- [34] C. Izuchukwu, A. A. Mebawondu, and O. T. Mewomo, A new method for solving split variational inequality problems without co-coerciveness, J. Fixed Point Theory Appl. 22(2020), 98, DOI: https://doi.org/10.1007/s11784-020-00834-0.
- [35] Z. Opial, Weak convergence of the sequence of successive approximation for nonexpansive mappings, Bull. Amer. Math. Soc. 73(1967), 591–597.
- [36] H. Iiduka and W. Takahashi, Weak convergence theorem by Cesáro means for nonexpansive mappings and inverse-strongly monotone mappings, J. Nonlinear Convex Anal. 7(2006), 105–113.
- [37] A. R. Khan, Properties of fixed point set of a multivalued map, J. Appl. Math. Stoch. Anal. 3(2005), 323–331.
- [38] W. Cholamjiak and S. Suantai, A hybrid method for a countable family of multivalued maps, equilibrium problems, and variational inequality problems, Discrete Dyn. Nat. Soc. 2010(2010), 349158, DOI: https://doi.org/10.1155/2010/349158.
- [39] Y. Song and Y. J. Cho, Some note on Ishikawa iteration for multivalued mappings, Bull. Korean Math. Soc. 48(2011), no. 3, 575–584.
- [40] A. Taiwo, L. O. Jolaoso, and O. T. Mewomo, Viscosity approximation method for solving the multiple-set split equality common fixed-point problems for quasi-pseudocontractive mappings in Hilbert Spaces, J. Ind. Manag. Optim. (2020), DOI: https://doi.org/10.3934/jimo.2020092.
- [41] L. O. Jolaoso, T. O. Alakoya, A. Taiwo, and O. T. Mewomo, A parallel combination extragradient method with Armijo line searching for finding common solution of finite families of equilibrium and fixed point problems, Rend. Circ. Mat. Palermo (2)69 (2020), no. 3, 711–735, DOI: https://doi.org/10.1007/s12215-019-00431-2.
- [42] S. Suantai, Weak and strong convergence criteria of Noor iterations for asymptotically nonexpansive mappings, J. Math. Anal. Appl. 311(2005), 506–517.
- [43] C. Martinez-Yanesa and H. K. Xu, Strong convergence of the CQ method for fixed point iteration processes, Nonlinear Anal. 64(2006), 2400–2411.
- [44] K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Dekker, New York, 1984.
- [45] K. Nakajo and W. Takahashi, Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl. 279(2003), 372–379.
- [46] Z. Ma, L. Wang, S. S. Chang, and W. Duan, Convergence theorems for split equality mixed equilibrium problems with applications, Fixed Point Theory Appl. 2015(2015), 31, DOI: https://doi.org/10.1186/s13663-015-0281-x.
- [47] F. Cianciaruso, G. Marino, L. Muglia, and Y. Yao, A hybrid projection algorithm for finding solutions of mixed equilibrium problem and variational inequality problem, Fixed Point Theory Appl. 2010(2009), 383740, DOI: https://doi.org/10.1155/2010/383740.
- [48] G. Fichera, Sul problema elastostatico di Signorini con ambigue condizioni al contorno, Atti Accad. Naz. Lincei VIII. Ser. Rend. Cl. Sci. Fis. Mat. Nat. 34(1963), 138–142.
- [49] G. Stampacchia, Formes bilineaires coercitives sur les ensembles convexes, C. R. Acad. Sci. Paris 258(1964), 4413–4416.
- [50] A. Gibali, S. Reich, and R. Zalas, Outer approximation methods for solving variational inequalities in Hilbert space, Optimization 66(2017), no. 3, 417–437, DOI: https://doi.org/10.1080/02331934.2016.1271800.
- [51] G. Kassay, S. Reich, and S. Sabach, Iterative methods for solving systems of variational inequalities in reflexive Banach spaces, SIAM J. Optim. 21(2011), 1319–1344.
- [52] T. O. Alakoya, L. O. Jolaoso, and O. T. Mewomo, A self adaptive inertial algorithm for solving split variational inclusion and fixed point problems with applications, J. Ind. Manag. Optim. (2020), DOI: https://doi.org/10.3934/jimo.2020152.
- [53] S. H. Khan, T. O. Alakoya, and O. T. Mewomo, Relaxed projection methods with self-adaptive step size for solving variational inequality and fixed point problems for an infinite family of multivalued relatively nonexpansive mappings in Banach spaces, Math. Comput. Appl. 25(2020), no. 3, 54, DOI: https://doi.org/10.3390/mca25030054.
- [54] K. O. Aremu, H. A. Abass, C. Izuchukwu, and O. T. Mewomo, A viscosity-type algorithm for an infinitely countable family of (f, g)-generalized k-strictly pseudononspreading mappings in CAT(0) spaces, Analysis 40(2020), no. 1, 19–37, DOI: https://doi.org/10.1515/anly-2018-0078.
- [55] K. O. Aremu, C. Izuchukwu, G. N. Ogwo, and O. T. Mewomo, Multi-step Iterative algorithm for minimization and fixed point problems in p-uniformly convex metric spaces, J. Ind. Manag. Optim. (2020), DOI: https://doi.org/10.3934/jimo.2020063.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b8301f06-f02a-416d-9d5b-a8a9017f97c7