PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of a modified method of humic acids extraction as an efficient process in the production of formulations for agricultural purposes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Due to their properties, humic acids (HA) can interact with macro- and micronutrients and retain plant nutrients in the soil profile. The aim of the presented work was to develop a new integrated 4-step process for the isolation of humic acids from peat with their simultaneous enrichment in macronutrients. The study demonstrated the possibility of replacing traditional solutions used in the extraction of humic acids with solutions that are a source of macronutrients. For the alkaline extraction step, a process assisted with ultrasound was implemented, which allowed to increase the efficiency of humic acids isolation. Optimization of this step has shown that, with the application of ultrasound in the new procedure, it is possible to obtain the humic acids isolation efficiency of more than 60%. The qualitative analysis of the products obtained confirmed the presence of structures characteristic of humic acids, including key functional groups.
Rocznik
Strony
31--39
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wz.
Twórcy
  • Wrocław University of Science and Technology, Faculty of Chemistry, Department of Engineering and Technology of Chemical Processes, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Wrocław University of Science and Technology, Faculty of Chemistry, Department of Engineering and Technology of Chemical Processes, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Wrocław University of Science and Technology, Faculty of Chemistry, Department of Engineering and Technology of Chemical Processes, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Wrocław University of Science and Technology, Faculty of Chemistry, Department of Engineering and Technology of Chemical Processes, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • 1. Krasowicz, S., Oleszek, W., Horabik, J., Debicki, R. Jankowiak, J., Stuczynski, T. & Jadczyszyn, J. (2011). Racjonalne gospodarowanie środowiskiem glebowym Polski. Pol. J. Agron. 7, 43–58.
  • 2. Skłodowski, P. & Bielska, A. (2009). Właściwości i urodzajność gleb Polski - podstawą kształtowania relacji rolno-środowiskowych. Water Environ. Rural Areas. 9(4), 203–14.
  • 3. Liu, M., Wang, C., Wang, F. & Xie, Y. (2019). Vermicompost and humic fertilizer improve coastal saline soil by regulating soil aggregates and the bacterial community. Arch. Agron. Soil Sci. 65(3), 281–293. DOI: 10.1080/03650340.2018.1498083.
  • 4. Olk, D.C., Bloom, P.R., Perdue, E.M., McKnight, D.M., Chen, Y., Farenhorst, A., Senesi, N., Chin, Y.P., Schmitt-Kopplin, P., Hertkorn, N. & Harir, M. (2019). Environmental and Agricultural Relevance of Humic Fractions Extracted by Alkali from Soils and Natural Waters. J. Environ. Qual. 48(2), 217–232. DOI: 10.2134/JEQ2019.02.0041.
  • 5. Šimanský, V., Juriga, M., Jonczak, J., Uzarowicz, Ł. & Stępień, W. (2019). How relationships between soil organic matter parameters and soil structure characteristics are affected by the long-term fertilization of a sandy soil. Geoderma. 342, 75–84. DOI: 10.1016/J.GEODERMA.2019.02.020.
  • 6. Bhatt, P. & Singh, V.K. (2022). Effect of humic acid on soil properties and crop production – A review. Indian J. Agric. Sci. 92(12), 1423–1430. DOI: 10.56093/ijas.v92i12.124948.
  • 7. Deepamala, M., Pooja, M., Sucheta, S. & Alok, K. (2017). Humic acid rich vermicompost promotes plant growth by improving microbial community structure of soil as well as root nodulation and mycorrhizal colonization in the roots of Pisum sativum. Appl. Soil Ecol. 110, 97–108. DOI: 10.1016/j. apsoil.2016.10.008.
  • 8. Knyazev, D.A., Fokin, A.D. & Knyazev, V.D. (2002). The role of humic substances in formation of ion-conductive soil structures. Eurasian Soil Sci. 35(2), 132–8.
  • 9. Lumactud, R.A., Gorim, L.Y. & Thilakarathna, M.S. (2022). Impacts of humic-based products on the microbial community structure and functions toward sustainable agriculture. Front. Sustain. Food Syst. 6. DOI: 10.3389/FSUFS.2022.977121/BIBTEX.
  • 10. Ampong, K., Thilakaranthna, M.S. & Gorim, L.Y., (2022). Understanding the Role of Humic Acids on Crop Performance and Soil Health. Front. Agron. 10, 4. DOI: 10.3389/fagro.2022.848621.
  • 11. Mecozzi, M., Amici, M., Pietrantonio, E. & Romanelli, G. (2002). An ultrasound assisted extraction of the available humic substance from marine sediments. Ultrason. Sonochem. 9(1), 11–18. DOI: 10.1016/S1350-4177(01)00098-0.
  • 12. Raposo, J.C., Villanueva, U., Olivares, M., & Madariaga, J.M. (2016). Determination of humic substances in sediments by focused ultrasound extraction and ultraviolet visible spectroscopy. Microchem. J. 128, 26–33. DOI: 10.1016/J. MICROC.2016.04.004.
  • 14. Moreda-Piñeiro, A., Bermejo-Barrera, A. & Bermejo-Barrera, P. New trends involving the use of ultrasound energy for the extraction of humic substances from marine sediments. Anal. Chim. Acta. 524, 97–107. DOI: 10.1016/j.aca.2004.03.096.
  • 15. Javed, S., Kohli, K. & Ali, M. (2013). Microwave-Assisted Extraction of Fulvic Acid from a Solid Dosage Form: A Statistical Approach. J. Pharm. Innov., 8(3), 175–186. DOI: 10.1007/s12247-013-9157-y.
  • 16. Chemat, F., Rombaut, N., Sicaire, A.G., Meullemiestre, A., Fabiano-Tixier, A.S. & Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason Sonochem. 34, 540–560, DOI: 10.1016/j. ultsonch.2016.06.035.
  • 17. Cravotto, G., Mariatti, F., Gunjevic, V., Secondo, M., Villa, M., Parolin, J. & Cavaglià, G. (2018). Pilot scale cavitational reactors and other enabling technologies to design the industrial recovery of polyphenols from agro-food by-products, a technical and economical overview. Foods. 7(9). DOI: 10.3390/foods7090130.
  • 18. Karčauskienė, D., Repšienė, R., Ambrazaitienė, D., Mockevičienė, I., Šiaudinis, G. & Skuodienė, R. (2019). A complex assessment of mineral fertilizers with humic substances in an agroecosystem of acid soil. Zemdirbyste 106(4), 307–14. DOI: 10.13080/Z-A.2019.106.039.
  • 19. Swift, R.S. (1996). Organic matter characterization. In D. L. Sparks et al. (eds) Methods of soil analysis. Part 3. Chemical Methods (pp. 1018-1020). Madison, WI: Soil Science Society of America.
  • 20. Nieweś, D., Huculak-Mączka, M., Braun-Giwerska, M., Marecka, K., Tyc, A., Biegun, M., Hoffmann, K. & Hoffmann J. (2022). Ultrasound-Assisted Extraction of Humic Substances from Peat: Assessment of Process Efficiency and Products’ Quality. Molecules 27(11), 3413. DOI: 10.3390/molecules27113413.
  • 21. Standard Association of Poland. (1993). Polish standard: Fertilizers – determination of total nitrogen by distillation method. PN-C-87085.
  • 22. Standard Association of Poland. (1988). Polish standard: Fertilizers –test methods for phosphate content. PN-C-87015.
  • 23. Fuchsman, C.H. (1980). Peat industrial chemistry and technology. London, United Kingdom: Academic Press Inc.
  • 24. Huat, B.K., Prasad, A., Asadi, A. & Kazemian, S. (2014). Geotechnics of organic soils and peat. Leiden, Nederland: CRC Press.
  • 25. Dettmann, U., Kraft, N.N., Rech, R., Heidkamp, A. & Tiemeyer, B. (2021) Analysis of peat soil organic carbon, total nitrogen, soil water content and basal respiration: Is there a ‘best’ drying temperature? Geoderma 403, 115231. DOI: 10.1016/j.geoderma.2021.115231.
  • 26. Jonczak, J. (2013). Effect of peat samples drying on measured content of carbon and nitrogen fractions. Soil Sci. Ann. 64(4), 130–134. DOI: 10.2478/ssa-2013-0020.
  • 27. Paleckiene, R., Navikaite, R. & Slinksiene R. (2021). Peat as a raw material for plant nutrients and humic substances. Sustainability 13, 6354. DOI: 10.3390/su13116354.
  • 28. Asing, J. Wong, N. & Seng, L. (2009). Optimization of extraction method and characterization of humic acid derived from coals and composts (Pengoptimuman kaedah pengekstrakan dan pencirian asid humik daripada arang batu dan kompos). J. Trop. Agric. Food Sci. 37(2), 211–223.
  • 29. Doskočil, L., Burdíková-Szewieczková, J., Enev, V., Kalina, L. & Wasserbauer, J. (2018). Spectral characterization and comparison of humic acids isolated from some European lignites. Fuel 213, 123–132, DOI: 10.1016/J.FUEL.2017.10.114.
  • 30. Chang, R.R., Mylotte, R., Hayes, M.H.B., Mclnerney, R. & Tzou, Y.M. (2014). A comparison of the compositional differences between humic fractions isolated by the IHSS and exhaustive extraction procedures. Naturwissenschaften, 101(3), 197–209. DOI: 10.1007/S00114-013-1140-4.
  • 31. Fernandes, A.N. Giovanela, M., Esteves, V.I. & Sierra, M.M.S. (2010). Elemental and spectral properties of peat and soil samples and their respective humic substances. J. Mol. Struct. 971(1–3), 33–38. DOI: 10.1016/J.MOLSTRUC.2010.02.069.
  • 32. Garcia, D., Cegarra, J., Roig, A. & Abad, M. (1994). Effects of the extraction temperature on the characteristics of a humic fertilizer obtained from lignite. Bioresour. Technol. 47(2), 103–106. DOI: 10.1016/0960-8524(94)90106-6.
  • 33 Wali, A., Ben Salah, I., Zerrouki, M., Choukchou-Braham, A., Kamoun, Y. & Ksibi, M. (2019). A novel humic acid extraction procedure from Tunisian lignite. Euro. Mediterr. J. Environ. Integr. 4(1), 1–9. DOI: 10.1007/S41207-019-0115-Z/FIGURES/5.
Uwagi
W bibliografii brak poz. 13
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b82c789b-2b78-4f30-9219-02cda9aa2816
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.