PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reliability assessment of the port power system based on integrated energy hybrid system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The conventional port distribution power system is being disrupted by increasing distributed generation (DG) levels based on integrated energy. Different new energy resources combine with conventional generation and energy storage to improve the reliability of the systems. Reliability assessment is one of the key indicators to measure the impact of the distributed generation units based on integrated energy. In this work, an analytical method to investigate the impacts of using solar, wind, energy storage system (ESS), combined cooling, heating and power (CCHP) system and commercial power on the reliability of the port distribution power system is improved, where the stochastic characteristics models of the major components of the new energy DG resources are based on Markov chain for assessment. The improved method is implemented on the IEEE 34 Node Test Feeder distribution power system to establish that new energy resources can be utilized to improve the reliability of the power system. The results obtained from the case studies have demonstrated efficient and robust performance. Moreover, the impacts of integrating DG units into the conventional port power system at proper locations and with appropriate capacities are analyzed in detail.
Rocznik
Strony
art. no. e140372
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
  • Shanghai Maritime University, Shanghai, 201305, China
autor
  • Shanghai Maritime University, Shanghai, 201305, China
autor
  • Marine Design and Research Institute of China, Shanghai, 201305, China
  • Gdynia Maritime University, 81-225 Gdynia, Poland
Bibliografia
  • [1] T. Song, Y. Li, X. Zhang, C. Wu, J. Li, Y. Guo, and H. Gu, “Integrated port energy system considering integrated demand response and energy interconnection,” Int. J. Electr. Power Energy Syst., vol. 117, no. 1, p. 1055654, 2020, doi: 10.1016/j.ijepes.2019.105654.
  • [2] G. Parise, L. Parise, L. Martirano, P. Chavdarian, C-L. Su, and A. Ferrante, “Wise Port and Business Energy Management: Port Facilities, Electrical Power Distribution,” IEEE Trans. Ind. Appl., vol. 52, no. 1, pp. 18–24, 2016, doi: 10.1109/TIA.2015.2461176.
  • [3] L. Alhmoud and B. Wang, “A review of the state-of-the-art in wind-energy reliability analysis,” Renew. Sustain. Energy Rev., vol. 81, no.2, pp. 1643–1651, 2018, doi: 10.1016/j.rser.2017.05.252.
  • [4] J. Chen, T. Yu, Y. Xu, X. Cheng, B. Yang, and B. Zhen, “Fast analytical method for reliability evaluation of electricitygas integrated energy system considering dispatch strategies,” Appl. Energy, vol. 242, no. 2, pp. 260–272, 2019, doi: 10.1016/j.apenergy.2019.03.106.
  • [5] T. Adefarati, and R. Bansal, “The impacts of PV-wind-dieselelectric storage hybrid system on the reliability of a power system,” Energy Procedia, vol. 105, pp. 616–621, 2017, doi: 10.1016/j.egypro.2017.03.364.
  • [6] M. Ahmadi, O. Adewuyi, M. Danish, P. Mandal, A. Yona, and T. Senjyu, “Optimum coordination of centralized and distributed renewable power generation incorporating battery storage system into the electric distribution network,” Int. J. Electr. Power Energy Syst., vol. 125, p. 106458, 2021, doi: 10.1016/j.ijepes.2020.106458.
  • [7] G. Li, R. Zhang, T. Jiang, H. Chen, L. Bai, and X. Li, “Securityconstrained bi-level economic dispatch model for integrated natural gas and electricity systems considering wind power and power-to-gas process,” Appl. Energy, vol. 194, pp. 696–704, 2017, doi: 10.1016/j.apenergy.2016.07.077.
  • [8] C. Wang, S. Liu, Z. Bie, and J. Wang, “Renewable Energy Accommodation Capability Evaluation of Power System with Wind Power and Photovoltaic Integration,” IFAC-PapersOnLine, vol. 51, no. 28, pp. 55–60, 2018, doi: 10.1016/j.ifacol.2018.11.677.
  • [9] B. Das, M. Alotaibi, P. Das, M. Islam, S. Das, M Hossain, “Feasibility and techno-economic analysis of stand-alone and gridconnected PV/Wind/Diesel/Batt hybrid energy system: A case study,” Energy Strategy Rev., vol. 37, p. 100673, 2021, doi: 10.1016/j.esr.2021.100673.
  • [10] T. Agajie, B. Khan, J. Guerrero, and O. Mahela, “Reliability enhancement and voltage profile improvement of distribution network using optimal capacity allocation and placement of distributed energy resources,” Comput. Electr. Eng., vol. 93, pp. 1–22, 2021, doi: 10.1016/j.compeleceng.2021.107295.
  • [11] H. Nejad, S. Tavakoli, N. Ghadimi, S. Korjani, S. Nojavan, and H. Didani, “Reliability based optimal allocation of distributed generations in transmission systems under demand response program,” Electr. Power Syst. Res., vol. 176, pp. 1–10, 2019, doi: 10.1016/j.epsr.2019.105952.
  • [12] D. Almeida, C. Borges, G. Oliveira, and M. Pereira, “Multi-area reliability assessment based on importance sampling, MCMC and stratification to incorporate variable renewable sources,” Electr. Power Syst. Res., vol. 193, no. 4, pp. 1–12, 2021, doi: 10.1016/j.epsr.2020.107001.
  • [13] Y. Wang, X. Han, and Y. Ding, “Power system operational reliability equivalent modeling and analysis based on the Markov chain,” in Proc. of 2012 IEEE Int. Conf. Power System Techn. (POWERCON), 2012, pp. 1–5, doi: 10.1109/PowerCon.2012.6401316.
  • [14] M. Al-Muhaini and G. Heydt, “A novel method for evaluating future power distribution system reliability,” IEEE Trans. Power Syst., vol. 28, no. 3, pp. 3018–3027, 2013, doi: 10.1109/TPWRS. 2012.2230195.
  • [15] Z. Abdmouleh, A. Gastli, L. Ben-Brahim, M. Haouari, and N. Al-Emadi, “Review of optimization techniques applied for the integration of distributed generation from renewable energy sources,” Renew. Energy, vol. 113, pp. 266–280, 2017, doi: 10.1016/j.renene.2017.05.087.
  • [16] F. Lamzouri, E. Boufounas, and A. Ei Amrani, “Efficient energy management and robust power control of a stand-alone wind-photovoltaic hybrid system with battery storage,” J. Energy Storage, vol. 42, pp. 1–18, 2021, doi: 10.1016/j.est.2021.103044.
  • [17] M. Qaisrani, J. Wei, L. Ali-Khan, “Potential and transition of concentrated solar power: A case study of China,” Sustain. Energy Technol. Assess., vol. 44, no. 205, 2021, doi: 10.1016/j.seta.2021.101052.
  • [18] A. Allouhi, “A novel grid-connected solar PV-thermal/ wind integrated system for simultaneous electricity and heat generation in single family buildings,” J. Clean. Prod., vol. 6, 2021, doi: 10.1016/j.jclepro.2021.128518.
  • [19] R. Zhang, and H. Zhang, “Research on the application of solar photovoltaic power generation in port,” Pearl RiverWater Transport, vol. 11, pp. 23–25, 2015.
  • [20] E. Saretta, P. Caputo, and F. Frontini, “A review study about energy renovation of building facades with BIPV in urban environment,” Sustain. Cities Soc., vol. 44, pp. 343–355, 2019, doi: 10.1016/j.scs.2018.10.002.
  • [21] H. Lan, S. Wen, Y. Hong, D. Yu, and L. Zhang, “Optimal sizing of hybrid PV/diesel/battery in ship power system,” Appl. Energy, vol. 158, pp. 26–34, 2015, doi: 10.1016/j.apenergy.2015.08.031.
  • [22] D. Lamsal, V. Sreeram, Y. Mishra, and D. Kumar, “Output power smoothing control approaches for wind and photovoltaic generation systems: A review,” Renew. Sust. Energ. Rev., vol. 113, no. 12, pp. 1–22, 2019, doi: 10.1016/ j.rser.2019.109245.
  • [23] Y-L. Wang et al., “Research on capacity planning and optimization of regional integrated energy system based on hybrid energy storage system,” Appl. Therm. Eng., vol. 180, no. 6390, p. 115834, 2020, doi: 10.1016/j.applthermaleng.2020.115834.
  • [24] A. Malheiro, P. Castro, R. Lima, A. Estanqueiro, “Integrated sizing and scheduling of wind/PV/diesel/battery isolated systems,” Renew. Energy, vol. 83, pp. 646–657, 2015, doi: 10.1016/j.renene.2015.04.066.
  • [25] S. Afzali, and V. Mahalec, “Novel performance curves to determine optimal operation of CCHP systems,” Appl. Energy, vol. 226, pp. 1009–1036, 2018, doi: 10.1016/j.apenergy.2018.06.024.
  • [26] C-Y. Zheng, J-Y. Wu, X-Q. Zhai, and R-Z. Wang, “A novel thermal storage strategy for CCHP system based on energy demands and state of storage tank,” Int. J. Electr. Power Energy Syst., vol. 85, no. 4, pp. 117–129, 2017, doi: 10.1016/j.ijepes.2016.08.008.
  • [27] Z. Han, L-T. Tian, and L. Cheng, “A deducing-based reliability optimization for electrical equipment with constant failure rate components duration their mission profile,” Reliab. Eng. Syst. Safety, vol. 212, no. 2, pp. 1–10, 2021, doi: 10.1016/j.ress.2021.107575.
  • [28] M. Almuhaini and A. Al-Sakkaf, “Markovian model for reliability assessment of microgrids considering load transfer restriction,” Turk. J. Elec. Eng. & Comp. Sci., vol. 25, no. 6, pp. 4657–4672, 2017, doi: 10.3906/elk-1609-137.
  • [29] A. Kaabeche and R. Ibtiouen, “Techno-economic optimization of hybrid photovoltaic/wind/ diesel/battery generation in a standalone power system,” Solar Energy, vol. 103, pp. 71–82, 2014, doi: 10.1016/j.solener.2014.02.017.
  • [30] T. Adefarati and R. Bansal, “Reliability and economic assessment of a microgrid power system with the integration of renewable energy resources,” Appl. Energy, vol. 206, pp. 911–933, 2017, doi: 10.1016/j.apenergy.2017.08.228.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b82c4295-74c7-4244-ab85-59dcd0f3bb29
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.