PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelowanie numeryczne przewodów złożonych z nadprzewodników wysokotemperaturowych

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Numerical modeling of cables composed of high temperature superconducting tapes
Języki publikacji
PL
Abstrakty
PL
Ze względu na swoje zalety, w szczególności duży prąd krytyczny i duże krytyczne pole magnetyczne, taśmy typu Rare-Earth Barium Copper Oxide (REBCO) są jednymi z najbardziej obiecujących nadprzewodników wysokotemperaturowych. Uzyskiwany rozkład pola magnetycznego dla bardziej złożonych struktur, takich jak na przykład przewodów zbudowanych z taśm nadprzewodzących, może być symulowany numerycznie na podstawie pomiarów laboratoryjnych. W pracy przedstawiono metodykę takich symulacji: od pomiarów pojedynczej próbki do symulacji złożonych struktur nadprzewodzących.
EN
Rare Earth Copper Oxide (REBCO) tapes are one of the most promising high temperature (HTS) superconductors due to their advantages such as high critical current and high critical magnetic field. Magnetic field distribution of complex structures, for example cables composed of abovementioned tapes, can be numerically modeled based upon laboratory measurement results. This article presents step-by-step the method of modeling of complex structures.
Rocznik
Strony
48--51
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
  • Politechnika Śląska, Wydział Elektryczny, Katedra Metrologii, Elektroniki i Automatyki, ul. Akademicka 10, 44-100 Gliwice
  • Politechnika Śląska, Wydział Elektryczny, Katedra Metrologii, Elektroniki i Automatyki, ul. Akademicka 10, 44-100 Gliwice
Bibliografia
  • 1. C. Buzea and K. Robbie, "Assembling the puzzle of superconducting elements: a review", Superconductor Science and Technology, vol. 18, no. 1, pp. R1-R8, 2004.
  • 2. J. Bednorz and K. Muller, "Possible high T superconductivity in the Ba-La-Cu-O system", Zeitschrift fur Physik B Condensed Matter, vol. 64, no. 2, pp. 189-193, 1986.
  • 3. R. Withers, G. Liang, B. Cole and M. Johansson, "Thin-film HTS probe coils for magnetic-resonance imaging", IEEE Transactions on Applied Superconductivity, vol. 3, no. 1, pp. 2450-2453, 1993.
  • 4. D. Live and S. Chan, "Bulk susceptibility corrections in nuclear magnetic resonance experiments using superconducting solenoids", Analytical Chemistry, vol. 42, no. 7, pp. 791-792, 1970.
  • 5. "European Organization for Nuclear Research (CERN) official page," 2017. [Online]. Available: https://home.cern/about
  • 6. "International Thermonuclear Experimental Reactor official page", ITER, 2017. [Online]. Available: https://www.iter.org.
  • 7. W. Buckles and W. Hassenzahl, "Superconducting magnetic energy storage", IEEE Power Engineering Review, vol. 20, no. 5, pp. 16-20, 2000.
  • 8. T. Arndt, J. Grundmann, A. Kuhnert, P. Kummeth, W. Nick, M. Oomen, C. Schacherer and W. Schmidt, "Aspects on HTS applications in confined power grids", Superconductor Science and Technology, vol. 27, no. 12, p. 124010, 2014.
  • 9. "The AmpaCity Project", TDWorld, 2017. [Online]. Available: http://www.tdworld.com/overhead-distribution/ampacity-project.
  • 10. Jianxun Jin and Xiaoyuan Chen, "Development of HTS transformers", 2008 IEEE International Conference on Industrial Technology, 2008.
  • 11. E. Leung, "Superconducting fault current limiters", IEEE Power Engineering Review, vol. 20, no. 8, pp. 15-18, 30, 2000.
  • 12. C. Senatore, M. Alessandrini, A. Lucarelli, R. Tediosi, D. Uglietti and Y. Iwasa, "Progresses and challenges in the development of high-field solenoidal magnets based on RE123 coated conductors", Superconductor Science and Technology, vol. 27, no. 10, p. 103001, 2014.
  • 13. L. Goodrich and F. Fickett, "Critical current measurements: A compendium of experimental results", Cryogenics, vol. 22, no. 5, pp. 225-241, 1982.
  • 14. M. Rupich, W. Zhang, X. Li, T. Kodenkandath, D. Verebelyi, U. Schoop, C. Thieme, M. Teplitsky, J. Lynch, N. Nguyen, E. Siegal, J. Scudiere, V. Maroni, K. Venkataraman, D. Miller and T. Holesinger, "Progress on MOD/RABiTSTM 2G HTS wire", Physica C: Superconductivity, vol. 412-414, pp. 877-884, 2004.
  • 15. F. Radpour, R. Singh, S. Sinha, P. Chou, N. Hsu and M. Rahmati, "ChemInform Abstract: Metal Organic Chemical Vapor Deposition of High-Temperature Superconducting Y-Ba-Cu-O Films", ChemInform, vol. 21, no. 42, 1990.
  • 16. M. Igarashi, K. Kakimoto, S. Hanyu, C. Tashita, T. Hayashida, Y. Hanada, S. Fujita, K. Morita, N. Nakamura, Y. Sutoh, H. Kutami, Y. Iijima and T. Saitoh, "Remarkable progress in fabricating RE123 coated conductors by IBAD/PLD technique at Fujikura", Journal of Physics: Conference Series, vol. 234, no. 2, p. 022016, 2010.
  • 17, J. Lee, H. Lee, J. Lee, S. Choi, S. Yoo and S. Moon, "RCE-DR, a novel process for coated conductor fabrication with high performance", Superconductor Science and Technology, vol. 27, no. 4, p. 044018, 2014.
  • 18. R. Bhattacharya, Y. Qiao and V. Selvamanickam, "Electrodeposited Cu-Stabilization Layer for High-Temperature Superconducting Coated Conductors", Journal of Superconductivity and Novel Magnetism, vol. 24, no. 1-2, pp. 1021-1026, 2010.
  • 19. D. Uglietti, H. Kitaguchi, Seyong Choi and T. Kiyoshi, "Angular Dependence of Critical Current in Coated Conductors at 4.2 K and Magnet Design", IEEE Transactions on Applied Superconductivity, vol. 19, no. 3, pp. 2909-2912, 2009.
  • 20. M.Stępień, B. Grzesik, "FEM modelling of levitation forces between bulk superconductor and Halbach PM array", 2015 Joint UK-Japan Workshop on Physics and Applications of Superconductivity, April 12th-15th, 2015, Cambridge, UK.
  • 21. L. Rossi, X. Hu, F. Kametani, D. Abraimov, A. Polyanskii, J. Jaroszynski and D. Larbalestier, "Sample and length-dependent variability of 77 and 4.2 K properties in nominally identical RE123 coated conductors", Superconductor Science and Technology, vol. 29, no. 5, p. 054006, 2016.
  • 22. N. Amaro, J. Šouc, M. Vojenčiak, J. Pina, J. Martins, J. Ceballos and F. Gömöry, "AC Losses and Material Degradation Effects in a Superconducting Tape for SMES Applications", Technological Innovation for Collective Awareness Systems, pp. 417-424, 2014.
  • 23. Home Page | SuperPower", Superpower-inc.com, 2017. [Online]. Available: http://www.superpower-inc.com/.
  • 24. COMSOL Multiphysics® Modeling Software", Comsol.com, 2022. [Online]. Available: https://www.comsol.com/.
  • 25. K. Kubiczek, M. Stępień, M. Kampik, "Characterization of High-Temperature Superconducting Tapes”. In writing, 2018.
  • 26. F. Grilli, F. Sirois, V. Zermeno and M. Vojenciak, "Self-Consistent Modeling of the Ic of HTS Devices: How Accurate do Models Really Need to Be?", IEEE Transactions on Applied Superconductivity, vol. 24, no. 6, pp. 1-8, 2014.
  • 27. J. Nelder and R. Mead, "A Simplex Method for Function Minimization", 2017.
  • 28. K. Svanberg, "The method of moving asymptotes—a new method for structural optimization", 2017.
  • 29. V. Zermeño, K. Habelok, M. Stępień and F. Grilli, "A parameter-free method to extract the superconductor’s Jc(B,θ) field-dependence from in-field current–voltage characteristics of high temperature superconductor tapes", 2017.
  • 30. J. Clem, J. Claassen and Y. Mawatari, "AC losses in a finiteZstack using an anisotropic homogeneous-medium approximation", Superconductor Science and Technology, vol. 20, no. 12, pp. 1130-1139, 2007.
  • 31 W. Goldacker, F. Grilli, E. Pardo, A. Kario, S. Schlachter and M. Vojenčiak, "Roebel cables from REBCO coated conductors: a one-century-old concept for the superconductivity of the future", Superconductor Science and Technology, vol. 27, no. 9, p. 093001, 2014.
  • 32. G. Celentano, G. De Marzi, F. Fabbri, L. Muzzi, G. Tomassetti, A. Anemona, S. Chiarelli, M. Seri, A. Bragagni and A. della Corte, "Design of an Industrially Feasible Twisted-Stack HTS Cable-in-Conduit Conductor for Fusion Application", IEEE Transactions on Applied Superconductivity, vol. 24, no. 3, pp. 1-5, 2014.
  • 33. V. Zermeño, F. Sirois, M. Takayasu, M. Vojenciak, A. Kario and F. Grilli, "A self-consistent model for estimating the criticalcurrent of superconducting devices", Superconductor Science and Technology, vol. 28, no. 8, p. 085004, 2015.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b827c00e-b92b-4596-a3c3-efbea8881be8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.