PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Pressure stabilized finite elements simulation for steady and unsteady Newtonian fluids

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A numerical simulation of an incompressible viscous flow using the finite element method is presented. In this study, the pressure stabilization technique is suggested for the treatment of the incompressibility constraint for both steady and unsteady flow cases. To the best of the authors’ knowledge, the pressure stabilization technique is used for steady flows only. The proposed technique allows for equal low-order interpolation polynomials to be used for all variables which circumvent the so-called LBB compatibility condition without pressure checker boarding and solution instabilities. Results are obtained for two benchmark problems, namely, lid-driven cavity flow and the vortex-shedding behind a circular cylinder. The results are compared with published numerical and experimental works with an apparent degree of success.
Rocznik
Strony
17--26
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
  • Mathematics & Engineering Physics Department, Faculty of Engineering, Mansoura University PO 35516, Mansoura, Egypt
autor
  • Engineering Mathematics & Physics Department, Faculty of Engineering, Cairo University PO 12613, Giza, Egypt
autor
  • Mathematics & Engineering Physics Department, Faculty of Engineering, Mansoura University PO 35516, Mansoura, Egypt
Bibliografia
  • [1] Kwak K., Kiris C., Chang J., Computational challenges of viscous incompressible flows, Journal of Computers and Fluids 2005, 34, 283-299.
  • [2] Xu G.X., Li E., Tan V., G.R. Liu, Simulation of steady and unsteady incompressible flow using gradient smoothing method(GSM), Journal of Computers and Structures 2012, 90-91, 131-144.
  • [3] Choi D., Merkle C., The application of preconditioning in viscous flows, Journal of Computational Physics 1993, 105, 203-226.
  • [4] Turkel E., Preconditioned methods for solving the incompressible and low speed compressible equations, Journal of Comput. Phys. 1987, 72, 277-375.
  • [5] Patankar S.V., Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing, New York 1980.
  • [6] Courant R., Calculus of Variations and Supplementary Notes and Exercis, New York University, New York 1956.
  • [7] Chorin A.J., A numerical method for solving incompressible viscous flow problems, Journal of Computational Physics 1967, 212-226.
  • [8] Langtangen H.P., Mardal K., Winther R., Numerical methods for incompressible viscous flow, Journal of Advances in Water Resources 2002, 25, 1125-1146.
  • [9] Hughes T.J.R., Liu W.K., Brooks A., Finite element analysis of incompressible viscous flows by the penalty function formulation, Journal of Computational Physics 1979, 30, 1-60.
  • [10] Gunzburger M.D., Nicolaides R.A., Incompressible Computational Fluid Dynamics Trends and Advances, Cambridge University Press, 1993, 151-182.
  • [11] Elhanafy A., Study of blood flow in some arteries and veins using computational fluid dynamics, M.SC. thesis, Faculty of Engineering, Mansoura University, 2017.
  • [12] Hughes T.J.R., Franca L.P., Hulbert G.M., A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/Least-squares method for advective-diffusive equations, Journal of Computer Methods in Applied Mechanics and Engineering 1989, 73, 173-189.
  • [13] Tezduyar T.E., Stabilized finite element formulations for incompressible flow computations, Journal of Advances in Applied Mechanics 1992, 28.
  • [14] Brooks A.N., Hughes T.J.R., Stremline upwind/Petrov-Galerkin formulations for convective dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Journal of Computer Methods in Applied Mechanics and Engineering 1982, 32, 199-259.
  • [15] Elhanafy A., Guaily A., Esaid A., A hybrid stabilized finite element/finite difference method for unsteady viscoelastic flows, Journal of Mathematical modelling and Applications 2016, 2(1), 19-28.
  • [16] Hirsch C., Numerical Computation of Internal and External Flows, Vol. 1, Elsevier, 2007.
  • [17] Ghia U., Ghia K.N., Shin C.T., High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, Journal of Computer and Physics 1982, 48, 387-411.
  • [18] Teneda S., Experimental investigation of the wakes behind cylinders and plates at low Reynolds numbers, Journal of Physics Society 1956, 11(3), 302-309.
  • [19] Huang Y.Q., Deng J., Ren A.L., Research on lift and drag in unsteady viscous flow around circular cylinders, J. Zhejiang Univ. Sci. A 2003, 37(5), 596-601.
  • [20] Rahman M., Karim M., Abdul Alim M., Numerical investigation of unsteady flow past a circular cylinder using 2-D finite volume method, Journal of Naval Architecture and Marine Engineering 2007.
  • [21] Kasem T., Numerical simulation of incompressible oscillatory flow over rippled sea beds, M.SC. thesis, Faculty of Engineering, Cairo University, Elsevier, 2005.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b821f12a-f8e3-457e-a649-ab115c20df71
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.