Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The one-dimensional time-fractional advection-diffusion equation with the Caputo time derivative is considered. The fundamental solution to the Cauchy problem is obtained using the integral transform technique. The numerical results are illustrated graphically.
Rocznik
Tom
Strony
95--102
Opis fizyczny
Bibliogr. 16 poz., rys.
Twórcy
autor
- Institute of Mathematics and Computer Science, Jan Długosz University in Częstochowa Częstochowa, Poland
autor
- Institute of Mathematics, Częstochowa University of Technology Częstochowa, Poland
Bibliografia
- [1] Podlubny I., Fractional Differential Equations, Academic Press, San Diego 1999.
- [2] Metzler R., Klafter J., The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep. 2000, 339, 1-77.
- [3] West B.J., Bologna M., Grigolini P., Physics of Fractals Operators, Springer, New York 2003.
- [4] Povstenko Y.Z., Fractional heat conduction equation and associated thermal stresses, J. Thermal Stresses 2005, 28, 83-102.
- [5] Magin R.L., Fractional Calculus in Bioengineering, Begell House Publishers, Connecticut 2006.
- [6] Klimek M., On Solutions of Linear Fractional Differential Equations of a Variational Type, The Publishing Office of Częstochowa University of Technology, Częstochowa 2009.
- [7] Leszczyński J.S. An Introduction to Fractional Mechanics, The Publishing Office of Częstochowa University of Technology, Częstochowa 2011.
- [8] Uchaikin V.V., Fractional Derivatives for Physicists and Engineers, Springer, Berlin 2013.
- [9] Meerschaert M., Tadjeran C., Finite difference approximations for fractional advection-dispersion flow equations, J. Comput. Appl. Math. 2004, 172, 65-77.
- [10] Liu F., Zhuang P., Anh V., Turner I., Burrage K., Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation, Appl. Math. Comput. 2007, 191, 12-20.
- [11] Merdan M., Analytical approximate solutions of fractional convection-diffusion equation with modified Riemann-Liouville derivative by means of fractional variational iteration methods, Iranian J. Sci. Techn. 2013, A1, 83-92.
- [12] Liu F., Zhuang P., Turner I., Burrage K., Anh V., A new fractional finite volume method for solving the fractional diffusion equation, Appl. Math. Modell. 2013, http://dx.doi.org/10.1016/j.apm.2013.10.007
- [13] Liu F., Anh V., Turner I., Zhuang P., Time-fractional advection-dispersion equation, J. Appl. Math. Comput. 2003, 13, 233-245.
- [14] Huang F., Liu F., The time fractional diffusion equation and advection-dispersion equation, ANZIAM J. 2005, 46, 317-330.
- [15] Gorenflo R., Loutchko J., Luchko Yu., Computation of the Mittag-Leffler function and its derivatives, Fract. Calc. Appl. Anal. 2002, 5, 491-518.
- [16] Prudnikov A.P., Brychkov Yu.A., Marichev O.I., Integrals and Series. Elementary Functions, Nauka, Moscow 1981 (in Russian).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b8218c96-b621-46da-b255-54497b6a4958