PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the parameters of supercapacitors containing polypyrrole and its derivatives

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Investigation of some parameters of energy storage devices (so-called supercapacitors) in which the structures of selected conductive polymers were implemented. Researchers were interested in the relationship between the parameters of the supercapacitor and the molecular structure of the conductive polymer used as the electrode material. Design/methodology/approach: The polypyrrole and its derivatives were produced by an electropolymerization process performed with cyclic voltammetry. During the research, polymer supercapacitors were created containing collectors made of ITO plates. Measurement of device parameters using cyclic voltammetry and chronopotentiometry. In addition, the devices use polymer electrolytes based on poly (methyl methacrylate) (PMMA). Findings: Devices containing polypyrrole have the best electrochemical parameters, while supercapacitors containing poly (phenylpyrrole) have the lowest parameters. This parameter is due to the high hindrance in the poly(phenylpyrrole) molecule in the form of an aromatic ring. Research limitations/implications: The most significant limitation of the devices is their durability due to the low strength of the conductive layer on ITO plates. This layer was easily degraded with too many test cycles. Practical implications: It was confirmed that polypyrrole and its derivatives could be used as electrode materials in energy storage devices. Originality/value: One of the few studies that allow the evaluation of the molecular structure of polypyrrole and its derivatives as electrode material in symmetrical supercapacitors.
Rocznik
Strony
5--14
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
autor
  • Scientific and Didactic Laboratory of Nanotechnology and Materials Technologies, Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18A, 44-100 Gliwice, Poland
autor
  • Scientific and Didactic Laboratory of Nanotechnology and Materials Technologies, Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18A, 44-100 Gliwice, Poland
autor
  • Department of Physicochemistry and Polymer Technology, Faculty of Chemistry, Silesian University of Technology, ul. ks. M. Strzody 9, 44-100 Gliwice, Poland
Bibliografia
  • [1] A. Lisowska-Oleksiak, A. P. Nowak, M. Wilamowska, Supercapacitors as energy storage materials, Acta Energetica 1 (2010) 71-79 (in Polish).
  • [2] K. Zajkowski, P. Zieliński, The selected modern methods of energy storage in mobile devices, Buses - Technology, Operation, Transport Systems 15/6 (2014) 310-317 (in Polish).
  • [3] I. Shown, A. Ganguly, L.-C. Chen, K.-H. Chen, Conducting polymer-based flexible supercapacitor, Energy Science and Engineering 3/1 (2015) 2-26. DOI: https://doi.org/10.1002/ese3.50
  • [4] A. Breus, S. Abashin, O. Serdiuk, Carbon nanostructure growth: new application of magnetron discharge, Journal of Achievements in Materials and Manufacturing Engineering 109/1 (2021) 17-25. DOI: https://doi.org/10.5604/01.3001.0015.5856
  • [5] B.Ya. Venhryn, I.I. Grygorchak, Z.A. Stotsko, Effect of ultrasonic treatment of activated carbon on capacitive and pseudocapacitive energy storage in electrochemical supercapacitors, Journal of Achievements in Materials and Manufacturing Engineering 60/2 (2013) 59-65.
  • [6] W. Czerwiński, H. Kaczmarek, D. Kędziera, J. Kowalonek, J. Nowaczyk, E. Olewnik, Conductive and photosensitive polymer materials, UMK Publishing House, Toruń, 2012 (in Polish).
  • [7] K. Wójcik, A. Iwan, Application of electro-polymerization to obtain polymer and dye photovoltaic cells, Polymers 61/4 (2016) 239-247 (in Polish). DOI: https://doi.org/10.14314/polimery.2016.239
  • [8] S. Ko, H. Yoon, A. Chhetry, J. Park, PAAm/PEDOT: PSS hydrogel based hybrid sensor for simultaneous detection of pressure and temperature, Proceedings of the 2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems “MEMS”, Vancouver, BC, Canada, 2020, 168-171. DOI: https://doi.org/10.1109/MEMS46641.2020.9056144
  • [9] L. Ye, H. Ke, Y. Liu, The renaissance of polythiophene organic solar cells, Trends in Chemistry 3/12 (2021) 1074-1087. DOI: https://doi.org/10.1016/j.trechm.2021.09.008
  • [10] U. Ahmed, M.M. Shahid, S. Shahabuddin, N.A. Rahim, M. Alizadeh, A.K. Pandey, S. Sagadevan, An efficient platform based on strontium titanate nanocubes interleaved polypyrrole nanohybrid as counter electrode for dye-sensitized solar cell, Journal of Alloys and Compounds 860 (2021) 158228. DOI: https://doi.org/10.1016/j.jallcom.2020.158228
  • [11] S. Zimowski, W. Rakowski, Tribological polymer layer as a temperature sensor, Tribology 4 (2000) 817-825 (in Polish).
  • [12] K. Friedrich, Polymer composites for tribological applications, Advanced Industrial and Engineering Polymer Research 1/1 (2018) 3-39. DOI: https://doi.org/10.1016/j.aiepr.2018.05.001
  • [13] K. Yamani, R. Berenguer, A. Benyoucef, Preparation of polypyrrole (PPy)-derived polymer/ZrO2 nano-composites, Journal of Thermal Analysis and Calorimetry 135 (2019) 2089-2100. DOI: https://doi.org/10.1007/s10973-018-7347-z
  • [14] A. Atoi, Z. Talebpour, L. Fotouhi, Introduction of electropolymerization of pyrrole as a coating method for stir bar sorptive extraction of estradiol followed by gas chromatography, Journal of Chromatography A 1604 (2019) 460478. DOI: https://doi.org/10.1016/j.chroma.2019.460478
  • [15] X. Liu, J. Yang, X. Li, Q. Li, Y. Xia, Fabrication of polypyrrole (PPy) nanotube electrode for supercapacitors with enhanced electrochemical performance, Journal of Materials Science: Materials in Electronics 31 (2020) 581-586. DOI: https://doi.org/10.1007/s10854-019-02562-9
  • [16] R. Ullah, N. Khan, R. Khattak, M. Khan, M.S. Khan, O.M. Ali, Preparation of Electrochemical Supercapacitor Based on Polypyrrole/Gum Arabic Composites, Polymers 14/2 (2022) 242. DOI: https://doi.org/10.3390/polym14020242
  • [17] H. Belhadj, I. Moulefera, L. Sabantina, A. Benyoucef, Effects of Incorporating Titanium Dioxide with Titanium Carbide on Hybrid Materials Reinforced with Polyaniline: Synthesis, Characterization, Electro-chemical and Supercapacitive Properties, Fibers 10/5 (2022) 46. DOI: https://doi.org/10.3390/fib10050046
  • [18] C.S. Martinez-Cisneros, J.Y. Sanchez, B. Levenfeld, A. Varez, Polymer electrolytes based on POE and Na-TFS salt for all-solid-state batteries, Journal of Achievements in Materials and Manufacturing Engineering 73/2 (2015) 72-79.
  • [19] S. Aderyani, P. Flouda, S.A. Shah, M.J. Green, J.L. Lutkenhaus, H. Ardebili, Simulation of cyclic voltammetry in structural supercapacitors with pseudocapacitance behavior, Electrochimica Acta 390 (2021) 138822. DOI: https://doi.org/10.1016/j.electacta.2021.138822
  • [20] V. Petrić, Z. Mandić, On the need for simultaneous electrochemical testing of positive and negative electrodes in carbon supercapacitors, Electrochimica Acta, Vol. 384, (2021) 138372. DOI: https://doi.org/10.1016/j.electacta.2021.138372
  • [21] M.P. Sidheekha, K. Nufaira, A.K. Shabeeba, L. Rajan, Y.A. Ismail, Characterization of polyanilines synthesized at different pH for electrochemical sensing and supercapacitor applications, Materials Today: Proceedings 51/8 (2022) 2286-2292. DOI: https://doi.org/10.1016/j.matpr.2021.11.402
  • [22] H. Kwon, D.J. Han, B.Y. Lee, All-solid-state flexible supercapacitor based on nanotube-reinforced polypyrrole hollowed structures, RSC Advances 10/68 (2020) 41495- 41502. DOI: https://doi.org/10.1039/D0RA08064K
  • [23] M. Ates, M. Serin, I. Ekmen, Y.N. Ertas, Supercapacitor behaviours of polyaniline/CuO, polypyrrole/CuO and PEDOT/CuO nanocomposites, Polymer Bulletin 72 (2015) 2573-2589. DOI: https://doi.org/10.1007/s00289-015-1422-4
  • [24] H. Gorcay, I. Celik, Y. Sahin, One-step potentiostatic codeposition and electrochemical studies of poly(1- pyrenyl)-2,5-di(2-thienyl)pyrrole-co-pyrrole) film for electrochemical supercapacitors, Turkish Journal of Chemistry 42/4 (2018) 958-973. DOI: https://doi.org/10.3906/kim-1707-77
  • [25] W. He, C. Wang, F. Zhuge, X. Deng, X. Xu, T. Zhai, Flexible and high energy density asymmetrical supercapacitors based on core/shell conducting polymer nanowires/manganese dioxide nanoflakes, Nano Energy 35 (2017) 242-250. DOI: https://doi.org/10.1016/j.nanoen.2017.03.045
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b8212523-5542-4286-ac06-c0d39583e150
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.