PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis and characterization of iron oxide magnetic nanoparticles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
All-Polish Seminar on Mössbauer Spectroscopy OSSM 2016 (11th ; 19-22 June 2016 ; Radom-Turno, Poland)
Języki publikacji
EN
Abstrakty
EN
Small particles of magnetite, i.e. 7.5, 13.4 and 14.1 nm in diameter, were obtained by the method of co-precipitation. The crystal structure and size distributions were determined by means of transmission electron microscopy and X-ray diffraction. The magnetic properties of the nanoparticles were tested by Mössbauer spectroscopy within the temperature range from 3 K to room temperature (RT). The Mössbauer study of magnetic nanoparticles reveals relaxation behaviour related to the existence of the superparamagnetic phase. The blocking temperature depends on the sizes of the nanoparticles and the ammonia concentration.
Czasopismo
Rocznik
Strony
73--77
Opis fizyczny
Bibliogr. 19 poz., rys.
Twórcy
autor
  • Institute of Physics, Maria Curie-Skłodowska University, 1 M. Curie-Skłodowskiej Sq., 20-031 Lublin, Poland, Tel.: +48 81 537 6220, Fax: +48 81 537 6191
  • Institute of Physics, Maria Curie-Skłodowska University, 1 M. Curie-Skłodowskiej Sq., 20-031 Lublin, Poland, Tel.: +48 81 537 6220, Fax: +48 81 537 6191
autor
  • Institute of Physics, Maria Curie-Skłodowska University, 1 M. Curie-Skłodowskiej Sq., 20-031 Lublin, Poland, Tel.: +48 81 537 6220, Fax: +48 81 537 6191
autor
  • Department of Biophysics, University of Life Sciences in Lublin, 13 Akademicka Str., 20-001 Lublin, Poland
Bibliografia
  • 1. Xu, S., Habib, A. H., Pickel, A. D., & McHenry, M. E. (2015). Magnetic nanoparticle-based solder composites for electronic packaging applications. Prog. Mater. Sci., 67, 95–160. http://dx.doi.org/10.1016/j.pmatsci.2014.08.001.
  • 2. Zahn, M. (2001). Magnetic fluid and nanoparticle applications to nanotechnology. J. Nanopart. Res., 3, 73–78.
  • 3. Tartaj, P., Puerto Morales, M., Veintemillas-Verdaguer, S., Gonzalez-Carreno, T., & Serna, C. J. (2003). The preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D-Appl. Phys., 36, R182–R197. stacks.iop.org/JPhysD/36/R182.
  • 4. Duguet, E., Vasseur, S., Mornet, S., & Devoisselle, J. M. (2006). Magnetic nanoparticles and their applications in medicine. Nanomedicine, 1, 157–168. DOI:10.2217/17435889.1.2.157.
  • 5. Ito, A., Shinkai, M., Honda, H., & Kobayashi, T. (2005). Medical application of functionalized magnetic nanoparticles. J. Biosci. Bioeng., 100, 1–11. DOI: 10.1263/jbb.100.1.
  • 6. Sun, C., Lee, J. S. H., & Zhang, M. (2008). Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug Deliv. Rev., 60, 1252–1265. DOI: 10.1016/j.addr.2008.03.018.
  • 7. Veiseh, O., Gunn, J. W., & Zhang, M. (2010). Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv. Drug Deliv. Rev., 62, 284–304. DOI: 10.1016/j.addr.2009.11.002.
  • 8. Lacroix, L. M., Bel Malaki, R., Carrey, J., Lachaize, S., Respaud, M., Goya, G. F., & Chaudret, B. (2009). Magnetic hyperthermia in single-domain monodisperse FeCo nanoparticles: Evidences for Stoner-Wohlfarth behavior and large losses. J. Appl. Phys., 105, 023911. DOI: 10.1063/1.3068195.
  • 9. Subramanian, M., Miaskowski, A., Pearcec, G., & Dobsond, J. (2015). A coil system for realtime magnetic fluid hyperthermia microscopy studies. Int. J. Hyperther., 32, 112–120. DOI: 10.3109/02656736.2015.1104732.
  • 10. Wu, W., He, Q., & Jiang, C. (2008). Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies. Nanoscale Res. Lett., 3, 397–415.DOI: 10.1007/s11671-008-9174-9.
  • 11. Bumb, A., Brechbiel, M. W., Choyke, P. L., Fugger, L., Eggeman, A., Prabhakaran, D., Hutchinson, J., & Dobson, P. J. (2008). Synthesis and characterization of ultra-small superparamagnetic iron oxide nanoparticles thinly coated with silica. Nanotechnology, 19, 335601. DOI: 10.1088/0957-4484/19/33/335601.
  • 12. Taupitz, M., Wagner, S., Schnorr, J., Kravec, I., Pilgrimm, H., Bergmann-Fritsch, H., & Hamm, B. (2004). Phase I clinical evaluation of citrate-coated monocrystalline very small superparamagnetic iron oxide particles as a new contrast medium for magnetic resonance imaging. Invest. Radiol., 39, 394–405.
  • 13. Zhang, M. Q., Zhang, Y., & Kohler, N. (2002). Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials, 23, 1553–1561. DOI: 10.1016/S0142-9612(01)00267-8.
  • 14. Wiogo, H. T. R., Lim, M., Bulmus, V., Yun, J., & Amal, R. (2011). Stabilization of magnetic iron oxide nanoparticles in biological media by fetal bovine serum (FBS). Langmuir, 27, 843–850. DOI: 10.1021/La104278m.
  • 15. Williamson, G. K., & Hall, W. H. (1952). X-ray line broadening from filed aluminium and wolfram. Acta Metall., 1, 22–31. DOI: 10.1016/0001-6160(53)90006-6.
  • 16. Jeong, J. R., Shin, S. C., Lee, S. J., & Kim, J. D. (2005). Magnetic properties of superparamagnetic γ-Fe2O3 nanoparticles prepared by coprecipitation technique. J. Magn. Magn. Mater., 286, 5–9. DOI: 10.1016/j.jmmm.200.09.129.
  • 17. Kalska-Szostko, B., Zubowska, M., & Satuła, D. (2006). Studies of the magnetite nanoparticles by means of Mössbauer spectroscopy. Acta Phys. Pol. A, 109, 365–369.
  • 18. Marín, T., Montoya, P., Arnache, O., & Calderón, J. (2016). Influence of surface treatment on magnetic properties of Fe3O4 nanoparticles synthesized by electrochemical method. J. Phys. Chem. B, 120,6634–6645. DOI: 10.1021/acs.jpcb.6b01796.
  • 19. Mørup, S., Hansen, M. F., & Frandsen, C. (2010). Magnetic interactions between nanoparticles. Beilstein J. Nanotechnol., 1, 182–190. DOI: 10.3762/bjnano.1.22.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b82102c8-e7dc-4581-a9b0-f18cbb5f05b7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.