Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Sformułowanie przepływów wielofazowych na przykładzie trójfazowych przepływów nieizotermicznych w porowatych mediach)
Języki publikacji
Abstrakty
The present paper focuses on the simulation of three-phase non-isothermal compressible flow in porous media taking into account capillary effects. We propose a new formulation of the considered non-isothermal problem in which the gradients of capillary pressure functions are eliminated from the pressure and temperature equations by the introduction of a change of variables for the pressure. The mentioned change of variables is referred to as the global pressure. A computational algorithm for the numerical implementation of the problem using the finite difference method is proposed. A priori estimate for the solution of the difference problem is obtained. The results of numerical experiments on the example of a one-dimensional problem are presented.
W pracy autorzy koncentrują się na symulacji trójfazowego nie izotermicznego ściśliwego przepływu w środowiskach porowatych przy uwzględnieniu efektów kapilarnych. Zaproponowano nowe sformułowanie zagadnienia w którym gradienty funkcji ciśnienia kapilarnego są wyeliminowane z równań ciśnienia i temperatury poprzez zamiane zmiennych dla ciśnienia globalnego. Zaproponowano implementację algorytmu wykorzystując schemat różnicowy. Wyniki obliczeń dla jednowymiarowego zagadnienia przedstawiono w zakończeniu pracy.
Wydawca
Czasopismo
Rocznik
Tom
Strony
24--31
Opis fizyczny
Bibliogr. 27 poz., wykr.
Twórcy
autor
- Institute of Electronics and Information Technology, Electrical Engineering and Computer Science Faculty, Lublin University of Technology, ul. Nadbystrzycka 38A, 20- 618 Lublin, Poland
autor
- D.Serikbayev East Kazakhstan State Technical University, Ust-Kamenogorsk, Kazakhstan
autor
- D.Serikbayev East Kazakhstan State Technical University, Ust-Kamenogorsk, Kazakhstan
Bibliografia
- [1] Chen Z., Yu X., Implementation of mixed methods as finite difference methods and applications to nonisothermal multiphase flow in porous media, Journal of Computational Mathematics, Vol. 24, No.3, 2006, pp. 281-294.
- [2] Mozzaffari S. et al, Numerical modeling of steam injection in heavy oil reservoirs, Fuel, No.112, 2013, pp. 185-192.
- [3] Salimi H., Wolf K.H., Bruining J., Negative saturation approach for non-isothermal compositional two-phase flow simulations, Transport in Porous Media, 2014, pp. 1-22.
- [4] Bokserman A.A., Yakuba S.I., Numerical study of the process of steam injection (in Russian), Izvestiya AN SSSR, No.4, 1987, pp.78-84.
- [5] Abdramanova M.B., Mathematical modeling of the process of steam injection (in Russian), Ph.D. thesis, 2001, 131 p.
- [6] Akhmed-Zaki D., On a problem of two-phase filtration of a mixture in porous media taking into account thermal effects (in Russian), Proceedings of Oil and Gas, Vol. 3, Azerbaijan, 2010, pp. 29-33.
- [7] Zhumagulov B., Monakhov V. Fluid dynamics of oil production, Elsevier Science, 2013, 280 p.
- [8] Bocharov O.B., Telegin I.G. The numerical solution of the problem of stationary nonisothermal two-phase filtration using the establishing method (in Russian), Teplofizika i aeromekhanika, Vol. 16, No.1, 2009, pp. 61-67.
- [9] Chavent G., A fully equivalent global pressure formulation for three-phase compressible flow, CoRR, Vol. abs/0901.1464, 2009, 19 p.
- [10] Bastian P., Numerical Computation of Multiphase Flows in Porous Media, Christian-Albrechts-Universitat Kiel, 1999, 236 p.
- [11] Saad B., Saad M., Study of full implicit petroleum engineering finite volume scheme for compressible two phase flow in porous media, SIAM Journal of Numerical Analysis, 2013, pp. 1-34.
- [12] Antontsev S.N., On the solvability of boundary value problems for degenerate two-phase porous flow equations, Dinamika Sploshnoi Sredy, Vyp. 10, 1972, pp. 28-53.
- [13] Chavent G., Jaffre J., Mathematical models and finite elements for reservoir simulation, Elsevier, 1986, 375 p.
- [14] Amirat Y., Shelukhin V., Global weak solutions to equations of compressible miscible flows in porous media, SIAM Journal of Mathematical Analysis, Vol.38, No.6, 2007, pp.1825-1846.
- [15] Amaziane B., Jurak M., Vrbaski A., Existence for a global pressure formulation of water-gas flow in porous media, Electronic Journal of Differential Equations, No.102, 2012, pp.1-22.
- [16] Arbogast T., The existence of weak solutions to single porosity and simple dual-porosity models of two-phase incompressible flow, Nonlinear Anal., 19 (1992), pp. 1009-1031.
- [17] Amaziane B., Pankratov L., Piatnitski A., The existence of weak solutions to immiscible compressible two-phase flow in porous media: the case of fields with different rock-types, Discrete and continuous dynamical systems Series B, 2013, pp. 1217-1251.
- [18] Chen Z., Degenerate two-phase incompressible flow I: Existence, uniqueness and regularity of a weak solution, Journal of Differential Equations, Vol.171, 2001, pp.203-232.
- [19] Chen Z., Ewing R., Full-discrete finite element analysis of multiphase flow in groundwater hydrology, SIAM Journal of Numerical Analysis, Vol.40, 1997, pp.203-226.
- [20] Chen Z., Ewing R., Comparison of various formulations of three-phase flow in porous media, Journal of Computational Physics, 1997, pp.362-373.
- [21] Amaziane B., Jurak M., Keko A., Modeling compositional compressible two-phase flow in porous media by the concept of the global pressure, Computational Geoscience, Vol.18, Issue 3-4, 2014, pp. 297-309.
- [22] Steinkamp K., Schumacher J.O. et al., A non-isothermal PEM fuel cell model including two water transport mechanisms in the membrane, Journal of fuel cell science and technology, Vol.5, No.1, 16 pp.
- [23] Yortsos Y.C., Analytical model of oil recovery by steam injection, Ph.D. Thesis, California Institute of Technology Pasadena, California, 1979, 349 p.
- [24] Martinez M.J., Hopkins P.L. LDRD Final Report: Physical Simulation of Nonisothermal Multiphase Multicomponent Flow in Porous Media, Sandia National Laboratories, 1997, 65 p.
- [25] Gudbjerg J. Remediation by steam injection, Ph.D. Thesis, Environment & Resources DTU Technical University of Denmark, 2003.
- [26] Adenekan A.E., Patzek T.W., Pruess K., Modeling of Multiphase Transport of Multicomponent Organic Contaminants and Heat in the Subsurface: Numerical Model Formulation,Water Resources Research, Vol. 29, Issue 11, 1993, pp. 3727-3740.
- [27] Chen Z. Reservoir Simulation: Mathematical Techniques in Oil Recovery, SIAM, Philadelphia, 2007, 214 pp.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b81da5c0-4f57-40fa-9ac3-fa0ba756ac15