PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The northernmost part of the Great Sumatran Fault map and images derived from gravity anomaly

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Great Sumatran Fault (GSF) activity is a severe threat to Banda Aceh development as the capital city of Aceh Province, Indonesia. The earthquakes originating along this fault trace, despite generating low strength, considerably threaten infra structure and human lives. Therefore, a detailed study of the GSF activity and presence becomes critical. In this paper, we applied the Global Gravity Model plus (GGMPlus) to map the subsurface structure and modeling of two GSF segments with a resolution of 200 m/px, namely the Aceh and Seulimeum segments toward the north of the Sumatran Island. The Bouguer anomaly data are inconsistent with the geology of the study areas, dominated by igneous rocks on the Aceh segment and volcanic rocks on the Seulimeum segment. Further, the contrast between the Seulimeum segment in the northeast and the Aceh segment in the southwest can be demonstrated by high-pass fltering. The GGMPlus data validation results with feld measurements using the Scintrex CG-5 Autograv, the root mean square error obtained via data comparison are 12.32% in the Krueng Raya fault zone, and 26.1% at the Seulawah Agam Volcano area, respectively. We also performed 2D gravity data modeling along with the Aceh and Seulimeum segments in the NW–SE direction. This model was then compared with the geological cross section, seismicity, and magnetotelluric data. The results of Singular Value Decomposition and Occam inversion show three vertical blocks of high densities with an interspersion of lower densities, which can be confrmed as the Aceh and Seulimeum segments. Based on data processing, it can be concluded that the GGMPlus satellite can improve the maps and images of the northernmost GSF structure.
Czasopismo
Rocznik
Strony
795--807
Opis fizyczny
Bibliogr. 50 poz.
Twórcy
  • Geophysical Engineering Department, Universitas Syiah Kuala, Darussalam-Banda, Aceh 23111, Indonesia
  • Geophysical Engineering Department, Universitas Syiah Kuala, Darussalam-Banda, Aceh 23111, Indonesia
  • Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Darussalam-Banda, Aceh 23111, Indonesia
  • Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Darussalam-Banda, Aceh 23111, Indonesia
autor
  • Geophysical Engineering Department, Universitas Syiah Kuala, Darussalam-Banda, Aceh 23111, Indonesia
  • Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Darussalam-Banda, Aceh 23111, Indonesia
Bibliografia
  • 1. Asyqari A, Sugiyanto D, Yanis M, Abdullah F, Ismail N (2019) Mapping of archaeological structure along east-coast of Aceh Besar District, Indonesia based on total magnetic field anomalies. IOP Conf Ser Earth Environ Sci 348:012041. https://doi.org/10.1088/1755-1315/348/1/012041
  • 2. Bellier O, Sebrier M, Pramumijoyo S, Beaudouin T, Harjono H, Bahar I, Forni O (1997) Paleoseismicity and seismic hazard along the Great Sumatran Fault (Indonesia). J Geodyn 24:169–183
  • 3. Bennett JD, Bridge NR, Djunuddin A, Ghazali SA, Jeffery DH, Keats W, Rock NMS, Thompson SJ, Whandoyo R (1981) The Geology of the Banda Aceh Quadrangle, Sumatra-Geological Research and Development Centre, Bandung. Explan. note 19.
  • 4. BNPB (2013) Dampak dan Penanganan Bencana Gempa Bumi 6.2 SR di Bener Meriah dan Aceh Tengah [WWW Document]. https://bnpb.go.id/berita/30-meninggal-dan-275-luka-akibat-gempa-6-2-sr-di-aceh. Accessed 4 May 20.
  • 5. Chatterjee S, Bhattacharyya R, Michael L, Krishna KS, Majumdar TJ (2007) Validation of ERS-1 and high-resolution satellite gravity with in-situ shipborne gravity over the Indian offshore regions: accuracies and implications to subsurface modeling. Mar Geod 30:197–216. https://doi.org/10.1080/01490410701438323
  • 6. Cooper GRJ, Cowan DR (2006) Enhancing potential field data using filters based on the local phase. Comput Geosci 32:1585–1591
  • 7. Duan XJ, Guo JY, Shum CK, Van Der Wal W (2009) On the postprocessing removal of correlated errors in GRACE temporal gravity field solutions. J Geod 83:1095
  • 8. Fernández-Blanco D, Philippon M, Von Hagke C (2016) Structure and kinematics of the Sumatran fault system in North Sumatra (Indonesia). Tectonophysics 693:453–464
  • 9. Gruber T, Visser PNAM, Ackermann C, Hosse M (2011) Validation of GOCE gravity field models by means of orbit residuals and geoid comparisons. J Geod. https://doi.org/10.1007/s00190-011-0486-7
  • 10. Hirt C, Claessens S, Fecher T, Kuhn M, Pail R, Rexer M (2013) New ultrahigh-resolution picture of Earth’s gravity field. Geophys Res Lett 40:4279–4283
  • 11. Hirt C, Kuhn M, Claessens S, Pail R, Seitz K, Gruber T (2014) Study of the Earth’s short-scale gravity field using the ERTM2160 gravity model. Geosci, Comput. https://doi.org/10.1016/j.cageo.2014.09.001
  • 12. Ismail N, Yanis M, Idris S, Abdullah F, Hanafiah B (2017) Near-surface fault structures of the seulimuem segment based on electrical resistivity model. J PhysConfSer 846:012016. https://doi.org/10.1088/1742-6596/846/1/012016
  • 13. Ito T, Gunawan E, Kimata F, Tabei T, Simons M, Meilano I, Agustan, Ohta Y, Nurdin I, Sugiyanto D (2012) Isolating along-strike variations in the depth extent of shallow creep and fault locking on the northern Great Sumatran Fault. J Geophys Res Solid Earth 117:n/a-n/a. https://doi.org/10.1029/2011JB008940
  • 14. Jacoby W, Smilde PL (2009) Gravity interpretation: fundamentals and application of gravity inversion and geological interpretation. Springer, Berlin
  • 15. Kamesh Raju KA, Murty GPS, Amarnath D, Kumar MLM (2007) The west Andaman fault and its influence on the aftershock pattern of the recent megathrust earthquakes in the Andaman-Sumatra region. Res Lett, Geophys. https://doi.org/10.1029/2006GL028730
  • 16. Keating P, Pinet N (2013) Comparison of surface and shipborne gravity data with satellite-altimeter gravity data in Hudson Bay. Lead Edge 32:450–458
  • 17. Kern M, Schwarz KP, Sneeuw N (2003) A study on the combination of satellite, airborne, and terrestrial gravity data. J Geod. https://doi.org/10.1007/s00190-003-0313-x
  • 18. Kirschner M, Massmann FH, Steinhoff M (2013) GRACE. In: Distributed space missions for earth system monitoring. Springer, New York. https://doi.org/10.1007/978-1-4614-4541-8_19
  • 19. Lay T, Kanamori H, Ammon CJ, Nettles M, Ward SN, Aster RC, Beck SL, Bilek SL, Brudzinski MR, Butler R, Deshon HR, Ekström G, Satake K, Sipkin S (2005) The great Sumatra-Andaman earthquake of 26 December 2004. Science. https://doi.org/10.1126/science.1112250
  • 20. Lenhart A, Jackson CA-L, Bell RE, Duffy OB, Gawthorpe RL, Fossen H (2019) Structural architecture and composition of crystalline basement offshore west Norway. Lithosphere 11:273–293. https://doi.org/10.1130/L668.1
  • 21. Lewerissa R, Sismanto S, Setiawan A, Pramumijoyo S, Lapono L (2020) Integration of gravity and magnetic inversion for geothermal system evaluation in Suli and Tulehu, Ambon, eastern Indonesia. Arab J Geosci. https://doi.org/10.1007/s12517-020-05735-7
  • 22. Ma G, Li L (2012) Edge detection in potential fields with the normalized total horizontal derivative. Comput Geosci. https://doi.org/10.1016/j.cageo.2011.08.016
  • 23. Marwan A, Yanis M, Furumoto Y (2019a) Lithological identification of devastated area by Pidie Jaya earthquake through poisson’s ratio analysis. Int J Geomate 17:210–216. https://doi.org/10.21660/2019.63.77489
  • 24. Marwan, Yanis M, Idroes R, Ismail N (2019b) 2D inversion and static shift of MT and TEM data for imaging the geothermal resources of Seulawah Agam Volcano, Indonesia. Int J Geomate 17: 173–180. https://doi.org/https://doi.org/10.21660/2019.62.11724
  • 25. Miller HG, Singh V (1994) Potential field tilt-a new concept for location of potential field sources. J Appl Geophys. https://doi.org/10.1016/0926-9851(94)90022-1
  • 26. Muksin U, Bauer K, Muzli M, Ryberg T, Nurdin I, Masturiyono M, Weber M (2019) AcehSeis project provides insights into the detailed seismicity distribution and relation to fault structures in Central Aceh. Northern Sumatra J Asian Earth Sci 171:20–27. https://doi.org/10.1016/j.jseaes.2018.11.002
  • 27. Muzli M, Muksin U, Nugraha AD, Bradley KE, Widiyantoro S, Erbas K, Jousset P, Rohadi S, Nurdin I, Wei S (2018) The 2016 Mw 65 Pidie Jaya, Aceh, North Sumatra, earthquake: reactivation of an unidentified sinistral fault in a region of distributed deformation. Seismol Res Lett. https://doi.org/10.1785/0220180068
  • 28. Nasuti A, Pascal C, Ebbing J (2012) Onshore-offshore potential field analysis of the Møre-Trøndelag Fault Complex and adjacent structures of Mid Norway. Tectonophysics. https://doi.org/10.1016/j.tecto.2011.11.003
  • 29. Natawidjaja DH, Sieh K, Galetzka J, Suwargadi BW, Cheng H, Edwards RL, Chlieh M (2007) Interseismic deformation above the SundaMegathrust recorded in coral microatolls of the Mentawai islands, West Sumatra. J Geophys Res Solid Earth. https://doi.org/10.1029/2006JB004450
  • 30. Natawidjaja DH, Triyoso W (2007) The Sumatran fault zone—From source to hazard. J Earthq Tsunami 1:21–47
  • 31. Newcomb KR, McCann WR (1987) Seismic history and seismotectonics of the Sunda Arc. J Geophys Res Solid Earth 92:421–439
  • 32. Nurhasan D, Sutarno D, Ogawa Y, Kimata F, Sugiyanto D (2011) Investigation of Sumatran fault Aceh Segment derived from Magnetotelluric Data. In: The XXV IUGG Conference Melbourne.
  • 33. Nurhasan, Ogawa Y, Kimata F, Sutarno D, Sugiyanto D, Ismail N (2019) Identification of Sumatran fault zone using magnetotelluric and garvity data. In: The 13th SEGJ International Symposium, Tokyo, Japan, 12–14 November 2018. Society of Exploration Geophysicists and Society of Exploration Geophysicists of Japan, pp 182–185. https://doi.org/https://doi.org/10.1190/SEGJ2018-049.1
  • 34. Pirttijarvi M (2008) Gravity interpretation and modeling software based on 3-D block models. User’s Guide to version 1.
  • 35. Prihantoro R, Nurhasan, Sutarno D, Ogawa Y, Priahadena H, Fitriani D (2014) Geoelectrical dimensionality analyses in Sumatran Fault (Aceh segment) using magnetotelluric phase tensor. In: AIP Conference Proceedings. https://doi.org/https://doi.org/10.1063/1.4868767
  • 36. Rao NP, Rao CN, Hazarika P, Tiwari VM, Kumar MR, Singh A, Sharkov EV (2011) Structure and tectonics of the Andaman subduction zone from modeling of seismological and gravity data. Intech Publisher, Rijeka, Croatia
  • 37. Rizal M, Ismail N, Yanis M, Muzakir, Surbakti MS (2019) The 2D resistivity modelling on north sumatran fault structure by using magnetotelluric data. IOP Conf Ser Earth Environ Sci 364:012036. https://doi.org/10.1088/1755-1315/364/1/012036
  • 38. Saibi H, Mogren S, Mukhopadhyay M, Ibrahim E (2019) Subsurface imaging of the Harrat Lunayyir 2007–2009 earthquake swarm zone, western Saudi Arabia, using potential field methods. J Asian Earth Sci. https://doi.org/10.1016/j.jseaes.2018.07.024
  • 39. Sandwell DT, Smith WHF (2009) Global marine gravity from retracked Geosat and ERS-1 altimetry: ridge segmentation versus spreading rate. J Geophys Res Solid Earth. https://doi.org/10.1029/2008JB006008
  • 40. Sieh K, Natawidjaja D (2000) Neotectonics of the Sumatran fault, Indonesia. J Geophys Res Solid Earth 105:28295–28326. https://doi.org/10.1029/2000JB900120
  • 41. Silvennoinen H, Kozlovskaya E (2007) 3D structure and physical properties of the Kuhmo Greenstone Belt (eastern Finland): constraints from gravity modelling and seismic data and implications for the tectonic setting. J Geodyn. https://doi.org/10.1016/j.jog.2006.09.018
  • 42. Siripunvaraporn W, Egbert G (2009) WSINV3DMT: vertical magnetic field transfer function inversion and parallel implementation. Phys Earth Planet Inter. https://doi.org/10.1016/j.pepi.2009.01.013
  • 43. Tassis GA, Grigoriadis VN, Tziavos IN, Tsokas GN, Papazachos CB, Vasiljević I (2013) A new Bouguer gravity anomaly field for the Adriatic Sea and its application for the study of the crustal and upper mantle structure. J Geodyn. https://doi.org/10.1016/j.jog.2012.12.006
  • 44. USGS (2020) Earthquake Catalog [WWW Document]. https://earthquake.usgs.gov/earthquakes/search/. Accessed 3 May 2020.
  • 45. Wada S, Sawada A, Hiramatsu Y, Matsumoto N, Okada S, Tanaka T, Honda R (2017) Continuity of subsurface fault structure revealed by gravity anomaly: the eastern boundary fault zone of the Niigata plain, central Japan. Earth Planets Sp 69:15. https://doi.org/10.1186/s40623-017-0602-x
  • 46. Wang K, Hu Y, Bevis M, Kendrick E, Smalley R Jr, Vargas RB, Lauria E (2007) Crustal motion in the zone of the 1960 Chile earthquake: detangling earthquake-cycle deformation and forearc-sliver translation. Geochem Geophys Geosyst. https://doi.org/10.1029/2007GC001721
  • 47. Yanis M, Faisal A, Yenny A, Muzakir Z, Abubakar M, Nazli I (2020a) Continuity of Great Sumatran Fault in the Marine Area revealed by 3D Inversion of gravity data. J Teknol 83:145–155. https://doi.org/10.11113/jurnalteknologi.v83.14824
  • 48. Yanis M, Marwan M, Kamalia N (2020b) Aplikasi satellite GEOSAT dan ERS sebagai Metode Alternatif Pengukuran Gravity Ground pada Cekungan Hidrokarbon di Pulau Timur. Maj Geogr Indonesia. https://doi.org/10.22146/mgi.50782
  • 49. Yanis M, Marwan (2019) The potential use of satellite gravity data for oil prospecting in Tanimbar Basin, Eastern Indonesia. IOP Conf Ser Earth Environ Sci 364:012032. https://doi.org/10.1088/1755-1315/364/1/012032
  • 50. Yanis M, Marwan, Ismail N (2019) Efficient use of satellite gravity anomalies for mapping the Great Sumatran Fault in Aceh Province, Indonesian. J Appl Phys 9:61
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b81d20ac-ef70-44ee-8370-58479c54eadf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.