PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The possibility of using alternative packaging for takeaway food in the HoReCa sector, according to EU regulations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The need to search for alternative packaging for takeaway food in the HoReCa sector (i.e., hotels, restaurants, and catering) strictly relates to EU regulations. Directive (EU) 2019/904 prohibits placing on the EU market nine types of single-use plastic products, including food containers intended for consumption onsite or takeaway made of expanded polystyrene (EPS). This research aims to assess the possibility of replacing the EPS box with other packaging. A specific goal of this study is also to compare packaging in terms of the rate at which they transfer thermal energy by heat conduction. The experimental data were described by Newton’s law of cooling, based on which the constant k of each object (a food simulant in a certain type of packaging) is determined. When assessing substitutes, the thermal insulating properties of the packages are investigated, as well as their ability to maintain shape and tightness after contact with semi-liquid food. The availability of the selected packaging on the local market and its price are also considered. The research has shown that disposable packaging for takeaway food is currently more useful than reusable options. The packaging variants, which are confirmed as suitable for cooked solid dishes with semi-liquid additives, are ranked in the following order according to their utility index (largest to smallest): PPmet bag, XPS menubox, AL bag with PP tray, PAP/ PE bag, PP reusable container, GL reusable container, PAP/AL envelope, PP box, and rPET container. This study indicates the need for further research into innovative packaging for takeaway food, including lowering the weight of existing materials while simultaneously increasing their thermal insulation or searching for new bio-based materials.
Rocznik
Strony
108--121
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
  • Maritime University of Szczecin, Faculty of Engineering and Economics of Transport 11 Henryka Pobożnego St., 70-507 Szczecin, Poland
  • Maritime University of Szczecin, Faculty of Engineering and Economics of Transport 11 Henryka Pobożnego St., 70-507 Szczecin, Poland
  • Maritime University of Szczecin, Faculty of Engineering and Economics of Transport 11 Henryka Pobożnego St., 70-507 Szczecin, Poland
Bibliografia
  • 1. Abejón, R., Bala, A., Vázquez-Rowe, I., Aldaco, R. & Fullana-iPalmer, P. (2020). When plastic packaging should be preferred: Life cycle analysis of packages for fruit and vegetable distribution in the Spanish peninsular market. Resources, Conservation and Recycling 155, 104666, doi: 10.1016/j.resconrec. 2019.104666.
  • 2. Almeida, J., Le Pellec, M. & Bengtsson, J. (2018) Reusable coffee cups life cycle assessment and benchmark. Report for KeepCup, Australia. Available online: https:// www.researchgate.net/publication/328600555_ Reusable_coffee_cups_life_cycle_assessment_ a n d _ b e n c h m a r k ? c h a n n e l = d o i & l i n k I d = 5bd7e2fd4585150b2b90c367&showFulltext=true [Access: April 10, 2025].
  • 3. Arfelli, F., Roguszewska, M., Torta, G., Iurlo, M., Cespi, D., Ciacci, L. & Passarini, F. (2024) Environmental impacts of food packaging: Is it all a matter of raw materials? Sustainable Production and Consumption 49, pp. 318‒328, doi: 10.1016/j.spc.2024.06.032.
  • 4. Bandara, R. & Indunil, G.M. (2022) Food packaging from recycled papers: Chemical, physical, optical properties and heavy metal migration. Heliyon 8, e10959, doi: 10.1016/j. heliyon.2022.e10959.
  • 5. Chen, C., Ding, R., Yang, S., Wang, J., Chen, W., Zong, L. & Xie, J. (2020) Development of thermal insulation packaging film based on poly(vinyl alcohol) incorporated with silica aerogel for food packaging application. LWT 129, 109568, doi:10.1016/j.lwt.2020.109568.
  • 6. Chuayrueng, N. & Pattamaprom, C. (2024) Foodcontact potential of polylactic acid/natural rubber (PLA/NR) packaging films. MRS Communications 14, pp. 1380–1387, doi: 10.1557/s43579-024-00651-3.
  • 7. Dai, L., Xi, X., Li, X., Li, W., Du, Y., Lv, Y., Wang, W. & Ni, Y. (2021) Self-assembled all-polysaccharide hydrogel film for versatile paper-based food packaging. Carbohydrate Polymers 271, 118425, doi: 10.1016/j.carbpol.2021.118425.
  • 8. D’Almeida, A.P. & de Albuquerque, T.L. (2024) Innovations in food packaging: From bio-based materials to smart packaging systems. Processes 12, 2085, doi:10.3390/ pr12102085.
  • 9. Defruyt, S. (2019) Towards a new plastics economy. Field Actions Science Reports. J. Field Actions, Special Issue 19. Available from: http:// journals.openedition.org/factsreports/5369 [Access: November 18, 2024].
  • 10. De Kock, L., Sadan, Z., Arp, R. & Upadhyaya, P. (2020) A circular economy response to plastic pollution: Current policy landscape and consumer perception. South African Journal of Science 116 (5/6), doi: 10.17159/sajs.2020/8097.
  • 11. Dey, A., Dhumal, Ch.V., Sengupta, P., Kumar, A., Pramanik, N.K. & Alam, T. (2021) Challenges and possible solutions to mitigate the problems of single-use plastics used for packaging food items: a review. Journal of Food Science and Technology 58 (9), pp. 3251–3269, doi: 10.1007/ s13197-020-04885-6.
  • 12. Dreolin, N., Aznar, M., Moret, S. & Nerin, C. (2019) Development and validation of a LC–MS/MS method for the analysis of bisphenol A in polyethylene terephthalate. Food Chemistry 274 (15), pp. 246–253, doi: 10.1016/j. foodchem.2018.08.109.
  • 13. EPRS (2023) European Parliamentary Research Service. Revision of the Packaging and Packaging Waste Directive (March, 2023).
  • 14. European Commission (2021) European Commission ‒ Questions and answers. Available from: https://ec.europa. eu/commission/presscorner/api/files/document/print/en/ qanda_21_2709/QANDA_21_2709_EN.pdf [Accessed April 15, 2024].
  • 15. Geueke, B. & Muncke, J. (2018) Substances of very high concern in food contact materials: Migration and regulatory background. Packaging Technology and Science 31 (12), pp. 757–769, doi: 10.1002/pts.2288.
  • 16. Geueke, B., Phelps, D.W., Parkinson, L.V. & Muncke, J. (2023) Hazardous chemicals in recycled and reusable plastic food packaging. Cambridge Prisms: Plastics 1, e7, doi: 10.1017/plc.2023.7.
  • 17. Hussain, S., Akhter, R. & Maktedar, S.S. (2024) Advancements in sustainable food packaging: from eco-friendly materials to innovative technologies. Sustainable Food Technology 2, pp. 1297‒1354, doi: 10.1039/D4FB00084F.
  • 18. Ibrahim, I.D., Hamam, Y., Sadiku, E.R., Ndambuki, J.M., Kupolati, W.K., Jamiru, T., Eze, A.A. & Snyman, J. (2022) Need for sustainable packaging: An overview. Polymers 14, 4430, doi: 10.3390/polym14204430.
  • 19. ING Economics Department (2019) Plastic Packaging in the Food Sector ‒ Six Ways to Tackle the Plastic Puzzle. Available from: https://think.ing.com/ uploads/reports/ING_-_The_plastic_puzzle_-_December_ 2019_%28003%29.pdf [Access: October 15, 2024].
  • 20. Ingrao, C., Tricase, C., Cholewa-Wójcik, A., Kawecka, A., Rana, R. & Siracusa, V. (2015) Polylactic acid trays for fresh-food packaging: A Carbon Footprint assessment. Science of The Total Environment 537, pp. 385‒398, doi:10.1016/j.scitotenv.2015.08.023.
  • 21. Kochańska, E., Łukasik, R.M. & Dzikuć, M. (2021) New circular challenges in the development of takeaway food packaging in the COVID-19 period. Energies 14 (15), 4705, doi: 10.3390/en14154705.
  • 22. Lacourt, Ch., Mukherjee, K., Garthoff,J., O’Sullivan, A., Meunier, L. & Fattori, V. (2024) Recent and emerging food packaging alternatives: Chemical safety risks, current regulations, and analytical challenges. Comprehensive Reviews in Food Science and Food Safety 23 (6), e70059, doi: 10.1111/1541-4337.70059.
  • 23. Licciardello, F. (2017) Packaging, blessing in disguise. Review on its diverse contribution to food sustainability. Trends in Food Science & Technology 65, pp. 32‒39. doi: 10.1016/j.tifs.2017.05.003.
  • 24. Maga, D., Hiebel, M. & Aryan, V. (2019) Comparative life cycle assessment of meat trays made of various packaging materials. Sustainability 11 (19), 5324, doi: 10.3390/ su11195324.
  • 25. Margeirsson, B., Gospavic, R., Pálsson, H., Arason, S. & Popov, V. (2011) Experimental and numerical modelling comparison of thermal performance of expanded polystyrene and corrugated plastic packaging for fresh fish. International Journal of Refrigeration 34 (2), pp. 573‒585, doi: 10.1016/j.ijrefrig.2010.09.017.
  • 26. Molina-Besch, K., Wikström, F. & Williams, H. (2019) The environmental impact of packaging in food supply chains ‒ does life cycle assessment of food provide the full picture? The International Journal of Life Cycle Assessment 24, pp. 37–50, doi: 10.1007/s11367-018-1500-6.
  • 27. Mujtaba, M., Lipponen, J., Ojanen, M., Puttonen, S. & Vaittinen, H. (2022) Trends and challenges in the development of bio-based barrier coating materials for paper/cardboard food packaging: a review. Science of the Total Environment 851 (part 2), 158328, doi: 10.1016/j. scitotenv.2022.158328.
  • 28. Nahar, S., Sian, M., Larder, R., Hatton, F.L. & Woolley, E. (2023) Challenges associated with cleaning plastic food packaging for reuse. Waste 1, pp. 21‒39, doi: 10.3390/ waste1010003.
  • 29. Ncube, L.K., Ude, A. U., Ogunmuyiwa, E.N., Zulkifli, R. & Beas, I.N. (2020) Environmental impact of food packaging materials: A review of contemporary development from conventional plastics to polylactic acid based materials. Materials 13 (21), 4994, doi:10.3390/ma13214994.
  • 30. Ncube, L.K., Ude, A.U., Ogunmuyiwa, E.N., Zulkifli, R. & Beas, I.N. (2021) An overview of plastic waste generation and management in food packaging industries. Recycling 6 (1), 12, doi: 10.3390/recycling6010012.
  • 31. Novakovic, K., Thumbarathy, D., Peeters, M., Geoghegan, M., Go Jefferies, J., Hicks, C., Manika, D. & Dai, S. (2023) Zero-waste circular economy of plastic packaging: The bottlenecks and a way forward. Sustainable Materials and Technologies 38, e00735, doi: 10.1016/j. susmat.2023.e00735.
  • 32. Pauer, E., Wohner, B., Heinrich, V. & Tacker M. (2019) Assessing the environmental sustainability of food packaging: An extended life cycle assessment including packaging-related food losses and waste and circularity assessment. Sustainability 11, 925, doi:10.3390/su11030925.
  • 33. Plastics Europe (2022) Plastics ‒ the Facts 2022. [Online]. Available from: https://plasticseurope.org/knowledge-hub/ plastics-the-facts-2022/ [Access: October 20, 2024].
  • 34. Research & Markets (2020) Online Food Delivery Services Global Market Report 2020‒30: COVID-19 Growth and Change. The Business Research Company: Hyderabad, India.
  • 35. Simoens, M.C., Leipold, S. & Fuenfschilling, L. (2022) Locked in unsustainability: Understanding lock-ins and their interactions using the case of food packaging. Environmental Innovation and Societal Transitions 45, pp. 14‒29, doi: 10.1016/j.eist.2022.08.005.
  • 36. Singh, S. (2019) The Soon to Be $200B Online Food Delivery Is Rapidly Changing the Global Food Industry. Available from: https://www.forbes.com/sites/ sarwantsingh/2019/09/09/the-soon-to-be-200b-onlinefood-delivery-is-rapidly-changingthe-global-food-industry/ [Accessed: October 10, 2024).
  • 37. Singh, S.P., Burgess, G. & Singh, J. (2008) Performance comparison of thermal insulated packaging boxes, bags and refrigerants for single-parcel shipments. Packaging Technology and Science 21, pp. 25‒35, doi: 10.1002/pts.773.
  • 38. Sokołowski, A. & Markowska, M. (2017) Iteracyjna metoda liniowego porządkowania obiektów wielocechowych. Przegląd Statystyczny R. LXI (2), pp. 154‒162, doi: 10.5604/01.3001.0014.0788.
  • 39. Tan, J., Tiwari, S.K. & Ramakrishna, S. (2021) Single-use plastics in the food services industry: Can it be sustainable? Materials Circular Economy 3, 7, doi: 10.1007/s42824-021- 00019-1.
  • 40. Turan, D., Keukens, D.M & Schifferstein, H.N.J. (2024) Food packaging technology considerations for designers: Attending to food, consumer, manufacturer, and environmental issues. Comprehensive Reviews in Food Science and Food Safety 23 (6), e7005, doi: 10.1111/1541-4337.70058.
  • 41. Thapliyal, D., Karale, M., Diwan, V., Kumra, S., Arya, R.K. & Verros, G.D. (2024) Current status of sustainable food packaging regulations: Global perspective. Sustainability 16, 5554, doi:10.3390/su16135554.
  • 42. Varžinskas, V. & Markevičiūtė, Z. (2020) Sustainable food packaging: Materials and waste management solutions. Environmental Research, Engineering and Management 76 (3), pp. 154‒164, doi: 10.5755/j01.erem.76.3.27511.
  • 43. Wang, M., Liu, Y., Liang, G., Ding, H., Zhou, X., Qin, S., Zhao, P. & Han, L. (2023) Migration analysis and health impact assessment of phthalates in takeaway food packaging materials. Journal of Food Safety 43 (1), e13021, doi:10.1111/jfs.13021.
  • 44. Wang, K., Yang, L. & Kucharek, M. (2020) Investigation of the effect of thermal insulation materials on packaging performance. Packaging Technology and Science 33 (6), pp. 227‒236, doi: 10.1002/pts.2500.
  • 45. Wibowo, E., Ulya, N., Farizi, M.R. & Fitriyanti, N. (2023) Derivation of Newton’s law of cooling and heating: Heating the water then cooling it down naturally to the room temperature. Momentum: Physics Education Journal 7 (1), pp. 78‒92, doi: 10.21067/mpej.v7i1.6889.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b81a6a0c-addf-4933-9c92-ebc369c2b426
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.