PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

New Functional Materials in Mechanical Engineering and Geology

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
New composite materials are proposed, which allow shaped charges to be used with increased efficiency, for purposes, such as special engineering and geotechnical applications, as well as in other industries. The main determinant of efficiency is the volume of the hole created in the target. The future directions of new materials production for shaped charges are shown.
Słowa kluczowe
Rocznik
Strony
135--149
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • Ukrainian State Geological Research Institute, Avtozavodska 78A, 04114 Kyiv, Ukraine
  • Shostka Institute of Sumy State University, Haharina 1, 41100 Shostka, Ukraine
  • Silesian University of Technology, ks. M. Strzody 7, 44-100 Gliwice, Poland
  • Igor Sikorski Kyiv Polytechnic Institute, Prosp. Peremohy 37, 03056 Kyiv, Ukraine
  • Silesian University of Technology, ks. M. Strzody 7, 44-100 Gliwice, Poland
  • Naftogaz of Ukraine, B. Khmelnitskogo 6, 01601, Kyiv, Ukraine
Bibliografia
  • [1] Ishchenko, A.N.; Afanaseva, S.A.; Belov, N.N., Burkin, V.V.; Rogaev, K.S.; Sammel, A.Y.; Skosyrskii, A.B.; Tabachenko, A.N.; Yugov, N.T. Intrusion Features of a High-speed Striker of a Porous Tungsten-based Alloy with a Strengthening Filler in a Steel Barrier. Tech. Phys. Lett. 2017, 43(9): 796-799.
  • [2] Afanas’eva, S.A.; Belov, N.N.; Biryukov, Yu.А.; Burkin, V.V.; Ishchenko, А.N.; Martsunova, L.S.; Tabachenko, А.N.; Khabibullin, M.V.; Yugov, N.T. Impact Properties of Tungsten-based Alloys under High-speed Interaction Conditions. Russ. Phys. J. 2013, 55(11): 1278-1283 (Russian Original: 2012, 55(11): 35-40).
  • [3] Bhavsar, R.; Vojdjia, N.I.; Ganguli, P. New Intellectual Materials. (in Russian) Oil Gas Rev. 2008, 4: 38-49.
  • [4] Wojewódka, A.; Witkowski, T. Methodology for Simulation of the Jet Formation Process in an Elongated Shaped Charge. Combust. Explos. Shock Waves 2014, 50(3): 362-367.
  • [5] Fedorov, S.V.; Bayanova, Y.M.; Ladov, S.V. Numerical Analysis of the Effect of the Geometric Parameters of a Combined Shaped-charge Liner on the Mass and Velocity of Explosively Formed Compact Elements. Combust. Explos. Shock Waves 2015, 51(1): 130-142.
  • [6] Voitenko, Y.I.; Goshovskii, S.V.; Drachuk, A.G.; Bugaets, V.P. Mechanical Effect of Shaped Charges with Porous Liners. Combust. Explos. Shock Waves 2013, 49(1): 109-116.
  • [7] Voitenko, Y.I.; Buhaets, V.P. The Effect of Aluminum on the Impact Properties of a Composite Cumulative Jet. (in Ukrainian) Herald of the Igor Sikorsky Kyiv Polytechnic Institute, Ser. «Mining» 2016, 30: 36-48.
  • [8] Voitenko, Y.; Kravets, V.; Shukurov, A.; Drachuk, O. Peculiarities of Britlle and Ductile Materials Destruction and Deformation During the Explosion of Industrial Shaped Charges. Min. Miner. Deposits 2017, 11(2): 12-20.
  • [9] Trishin, Y.A.; Kinelovskii, S.A. Effect of Porosity on Shaped-charge Flow. Combust. Explos. Shock Waves 2000, 36(2): 122-132.
  • [10] Babkin А.V.; Ladov S.V.; Fedorov S.V. Analysis of Influence of the Sintered Liner Composition on the Shaped-charge Jet Free Flight Behavior and its Penetration Capability. Int. Symp. Ballistics, Proc., 25th, Beijing, China, 2010, 2: 959-966.
  • [11] Andreev, S.G.; Kobylkin I.F. Sensitivity of Explosives to Internal Stimuli. (in Russian) In: The Physics of Explosion (Orlenko, L.P., Ed.), FIZMATLIT, Moscow, 2004, vol. 1, p. 249; ISBN 5-9221-0219-2.
  • [12] Church, P.; Claridge, R.; Ottley, P.; Lewtas, I.; Harrison, N.; Gould, P.; Braithwaite, C.; Williamson, D. Investigation of a Nickel-Aluminium Reactive Shaped Charge Liner. J. Appl. Mech. 2013, 80(3): 031701-031701-13.
  • [13] Pismenskaya, Е.B. High-temperature Synthesis of Intermetallic Compounds in the Mode of a Dynamic Thermal Explosion. PhD Thesis. (in Russian) Institute of Structural Macrokinetics and Material Sciences RAS, Chernogolovka, 2000, pp. 179.
  • [14] Mahov, M.N. Effect of Aluminum and Boron Additives on the Heat of Explosion and Acceleration Ability of High Explosives. Russ. J. Phys. Chem. B: Phys.2015, 9(1): 50-55.
  • [15] Strikanov, A.V.; Golubev, V.A., Vahrushev, V.V.; Panturov, E.V.; Grinevits, B.E.; Uskov, A.A.; Laktjushkin, V.A.; Kozlov, V.A.; Demidov, O.S.; Ulanova, A.L.; Yaroshenko, V.V. The Behavior of the Pyrotechnic Composition of Al-CuO at Shock-wave Loading. (in Russian) Zababakhin Scientific Readings - Russian Federal Nuclear Center, 2001, http://www.vniitf.ru/rig/konfer/6zst/dokl/sec5/39.pdf [accessed March 2019].
  • [16] Bacanov, S.S.; Gugolya, M.F.; Brazhnikov, M.А. Behavior of the Reacting System Sn + S in Shock Waves. Combust. Explos. Shock Waves 1994, 30(3): 361-365.
  • [17] Zelepugin, S.A.; Nikulichev, V.B. Numerical Modeling of Sulfur-Aluminum Interaction under Shock Wave Loading. Combust. Explos. Shock Waves 2000, 36(6): 845-849.
  • [18] Eakins, D.E.; Thadhani, N.N. The Shock-compression of Reactive Powder Mixtures. Int. Mater. Rev. 2009, 54(4): 181-213.
  • [19] Aydelotte, B.; Braithwaite, C.H.; McNesby, K.; Benjamin, R.; Thadhani, N.N.; Williamson, D.M.; Trexler, M. A Study of Fragmentation in a Ni + Al Structural Energetic Material. AIP Conf., Proc., 2012, 1426: 1097-1100.
  • [20] Wu, J.; Wang, H.; Fang, X.; Li, Y.; Mao, Y.; Yang, L.; Yin, Q.; Wu, S.; Yao, M.; Song, J. Investigation on the Thermal Behavior, Mechanical Properties and Reaction Characteristics of Al-PTFE Composites Enhanced by Ni Particle. Materials 2018, 11(9): 1741.
  • [21] Sorensen, B. High-velocity Impact of Encased Al/PTFE Projectiles on Structural Aluminum Armor. Procedia Eng. 2015, 103: 569-576.
  • [22] Chang, B.H.; Yin, J.P.; Cui, Z.Q.; Liu, T.X. Improved Dynamic Mechanical Properties of Modified PTFE Jet Penetrating Charge with Shell. Strength Mater. 2016, 48: 82-89.
  • [23] Bloshenko, V.N.; Bokii, V.A.; Merzhanov, A.G. Self-purifying Mechanism from Oxygen Contaminant During Combustion of a Mixture of Molybdenum and Boron Powders. Combust. Explos. Shock Waves 1988, 24(2): 218-226.
  • [24] Zhukov, A.N.; Yakushev, V.A.; Ananev, S.Y.; Dobrygin, V.V.; Dolgoborodov, A.Y. Investigation of Nickel Aluminide Formed Due to Shock Loading of Aluminum-Nickel Mixtures in Flat Recovery Ampoules. Combust. Explos. Shock Waves 2018, 54(1): 64-71.
  • [25] Horie, Y.; Graham, R.A.; Simonsen, I.K. Synthesis of Nickel Aluminides under High-Pressure Shock Loading. Mater. Lett. 1985, 3(9-10): 354-359.
  • [26] Rosenband, V.; Gany, A. Thermal Explosion Synthesis of a Magnesium Diboride Powder. Combust. Explos. Shock Waves 2014, 50(6): 653-657.
  • [27] Li, Y.-D.; Dong, Y.-S.; Feng, S.-S. Numerical Simulation of the Influence of an Axially Asymmetric Charge on the Impact Initiation Capability of a Rod-like Jet. Combust. Explos. Shock Waves 2012, 48(6): 713-718.
  • [28] Church, P.D.; Claridge, R.P.; Gould, P.J.; Townsley, R.G. Oil Well Perforators. Patent US 20130126238A1, 2013.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b81a1fd0-089d-4a96-b0b6-1bcf6b9ab720
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.