Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the present research, a scripting cartographic technique for the environmental mapping of Ethiopia using climate and topographic datasets is developed. The strength of the Generic Mapping Tools (GMT) is employed for the effective visualisation of the seven maps using high-resolution data: GEBCO, TerraClimate, WorldClim, CRUTS 4.0 in 2018 by considering the solutions of map design. The role of topographic characteristics for climate variables (evapotranspiration, downward surface shortwave radiation, vapour pressure, vapour pressure deficit and climatic water deficit) is explained. Topographic variability of Ethiopia is illustrated for geographically dispersed and contrasting environmental setting in its various regions: Afar, Danakil Depression, Ethiopian Highlands, Great Rift Valley, lowlands and Ogaden Desert. The relationships between the environmental and topographic variables are investigated with aid of literature review and the outcomes are discussed. The maps are demonstrated graphically to highlight variables enabling to find correlations between the geographic phenomena, their distribution and intensity. The presented maps honor the environmental and topographic data sets within the resolution of the data. Integration of these results in the interpretation maps presented here brings new insights into both the variations of selected climate variables, and the topography of Ethiopia.
Wydawca
Czasopismo
Rocznik
Tom
Strony
201--209
Opis fizyczny
Bibliogr. 43 poz., mapy
Twórcy
autor
- Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles (Brussels Faculty of Engineering), Laboratory of Image Synthesis and Analysis, Building L, Campus de Solbosch, Avenue Franklin Roosevelt 50, Brussels 1000, Belgium
Bibliografia
- ABATZOGLOU J., DOBROWSKI S., PARKS S., HEGEWISCH K.C. 2018. TerraClimate, a high-resolution global dataset of monthly cli mate and climatic water balance from 1958–2015. Scientific Data. Vol. 5, 170191. DOI 10.1038/sdata.2017.191.
- ADIMASSU Z., MEKONNEN K., YIRGA C., KESSLER A. 2014. Effect of soil bunds on runoff, soil and nutrient losses, and crop yield in the central highlands of Ethiopia. Land Degradation & Development. Vol. 25 p. 554–564. DOI 10.1002/ldr.2182.
- AHMAD I., DAR M.A., ANDUALEM T.G., TEKA A.H. 2020. GIS-based multicriteria evaluation of groundwater potential of the Beshilo River basin, Ethiopia. Journal of African Earth Sciences. Vol. 164, 103747 p. 1–10. DOI 10.1016/j.jafrearsci.2019.103747.
- ANDUALEM T.G., DEMEKE G.G. 2019. Groundwater potential assessment using GIS and remote sensing: A case study of Guna tana landscape, upper blue Nile Basin, Ethiopia. Journal of Hydrology: Regional Studies. Vol. 24, 100610 p. 1–13. DOI 10.1016/j.ejrh.2019.100610.
- AYENEW T. 2003. Evapotranspiration estimation using thematic mapper spectral satellite data in the Ethiopian rift and adjacent highlands. Journal of Hydrology. Vol. 279(1–4) p. 83–93. DOI 10.1016/S0022-1694(03)00173-2.
- BATÁRY P., DICKS L.V., KLEIJN D., SUTHERLAND W.J. 2015. The role of agri-environment schemes in conservation and environment al management. Conservation Biology. Vol. 29(4) p. 1006–1016. DOI 10.1111/cobi.12536.
- BENAMI E., JIN Z., CARTER M.R., GHOSH A., HIJMANS R.J., HOBBS A., KENDUIYWO B., LOBELL D.B. 2021. Uniting remote sensing, crop modelling and economics for agricultural risk management. Nature Reviews Earth & Environment. Vol. 2 p. 140–159. DOI 10.1038/s43017-020-00122-y.
- BEYENE A., CORNELIS W., VERHOEST N.E.C., TILAHUN S., ALAMIREW T., ADGO E., DE PUE J., NYSSEN J. 2018. Estimating the actual evapotranspiration and deep percolation in irrigated soils of a tropical floodplain, northwest Ethiopia. Agricultural Water Management. Vol. 202 p. 42–56. DOI 10.1016/j.agwat.2018.01.022.
- COLLINGS E.R., ALAMAR M.C., REDFERN S., COOLS K., TERRY L.A. 2019. Spatial changes in leaf biochemical profile of two tea cultivars following cold storage under two different vapour pressure deficit (VPD) conditions. Food Chemistry. Vol. 277 p. 179–185. DOI 10.1016/j.foodchem.2018.10.095.
- COLLINS C.D., BANKS-LEITE C., BRUDVIG L.A., FOSTER B.L., COOK W.M., DAMSCHEN E.I., ..., ORROCK J.L. 2017. Fragmentation affects plant community composition over time. Ecography. Vol. 40 p. 119–130. DOI 10.1111/ecog.02607.
- DILE Y.T., AYANA E.K., WORQLUL A.W., XIE H., SRINIVASAN R., LEFORE N., YOU L., CLARKE N. 2020. Evaluating satellite-based evapotranspiration estimates for hydrological applications in data-scarce regions: A case in Ethiopia. Science of The Total Environment. Vol. 743, 140702. DOI 10.1016/j.scitotenv.2020.140702.
- DIODATO N., CECCARELLI M., BELLOCCHI G. 2010. GIS-aided evaluation of evapotranspiration at multiple spatial and temporal climate patterns using geoindicators. Ecological Indicators. Vol. 10(5) p. 1009–1016. DOI 10.1016/j.ecolind.2010.02.009.
- EL MAAYAR M., CHEN J.M. 2006. Spatial scaling of evapotranspiration as affected by heterogeneities in vegetation, topography, and soil texture. Remote Sensing of Environment. Vol. 102(1–2) p. 33–51. DOI 10.1016/j.rse.2006.01.017.
- ELBELTAGI A., ASLAM M.R., MOKHTAR A., DEB P., ABUBAKAR G.A., KUSHWAHA N.L., VENANCIO L.P., MALIK A., KUMAR N., DENG J. 2020. Spatial and temporal variability analysis of green and blue evapotranspiration of wheat in the Egyptian Nile Delta from 1997 to 2017. Journal of Hydrology. Vol. 594, 125662. DOI 10.1016/j.jhydrol.2020.125662.
- FICK S.E., HIJMANS R.J. 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology. Vol. 37 p. 4302–4315. DOI 10.1002/joc.5086.
- FLINT L.E., FLINT A.L., THORNE J.H. 2015. Climate change: Evaluating your local and regional water resources. U.S. Geological Survey, Reston, VA. Fact Sheet. Vol. 2014(3098). DOI 10.3133/fs20143098.
- GAUGER S., KUHN G., GOHL K., FEIGL T., LEMENKOVA P., HILLENBRAND C. 2007. Swath-bathymetric mapping. Reports on Polar and Marine Research. Vol. 557 p. 38–45. DOI 10.6084/m9.figshare.7439231.
- GEBCO Compilation Group 2020. GEBCO 2020 Grid – A continuous terrain model of the global oceans and land. British Oceanographic Data Centre, National Oceanography Centre, NERC, UK. DOI 10.5285/a29c5465-b138-234d-e053-6c86abc040b9.
- GEBRU T.A., TESFAHUNEGN G.B. 2020. GIS based water balance components estimation in northern Ethiopia catchment. Soil and Tillage Research. Vol. 197, 104514. DOI 10.1016/j.still.2019.104514.
- HARRIS I., OSBORN T.J., JONES P., LISTER D. 2020. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Scientific Data. Vol. 7, 109. DOI 10.1038/s41597-020-0453-3.
- KLAUČO M., GREGOROVÁ B., KOLEDA P., STANKOV U., MARKOVIĆ V., LEMENKOVA P. 2017. Land planning as a support for sustainable development based on tourism: A case study of Slovak rural region. Environmental Engineering and Management Journal. Vol. 2(16) p. 449–458. DOI 10.30638/eemj.2017.045.
- KLAUČO M., GREGOROVÁ B., STANKOV U., MARKOVIĆ V., LEMENKOVA P. 2013. Determination of ecological significance based on geostatistical assessment: A case study from the Slovak Natura 2000 protected area. Open Geosciences. Vol. 5(1) p. 28–42. DOI 10.2478/s13533-012-0120-0.
- LEMENKOV V., LEMENKOVA P. 2021a. Using TeX Markup Language for 3D and 2D Geological Plotting. Foundations of Computing and Decision Sciences. Vol. 46(1) p. 43–69. DOI 10.2478/fcds-2021-0004.
- LEMENKOV V., LEMENKOVA P. 2021b. Measuring equivalent cohesion Ceq of the frozen soils by compression strength using Kriolab Equipment. Civil and Environmental Engineering Reports. Vol. 31(2) p. 63–84. DOI 10.2478/ceer-2021-0020.
- LEMENKOV V., LEMENKOVA P. 2021c. Testing deformation and compressive strength of the frozen fine-grained soils with changed porosity and density. Journal of Applied Engineering Sciences. Vol. 11(2) p. 113–120. DOI 10.2478/jaes-2021-0015.
- LEMENKOVA P. 2019a. GMT based comparative analysis and geomorphological mapping of the Kermadec and Tonga Trenches, Southwest Pacific Ocean. Geographia Technica. Vol. 14(2) p. 39–48. DOI 10.21163/GT_2019.142.04.
- LEMENKOVA P. 2019b. Geomorphological modelling and mapping of the Peru-Chile Trench by GMT. Polish Cartographical Review. Vol. 51(4) p. 181–194. DOI 10.2478/pcr-2019-0015.
- LEMENKOVA P. 2019c. Topographic surface modelling using raster grid datasets by GMT: Example of the Kuril-Kamchatka Trench, Pacific Ocean. Reports on Geodesy and Geoinformatics. Vol. 108 p. 9–22. DOI 10.2478/rgg-2019-0008.
- LEMENKOVA P. 2020a. GEBCO Gridded Bathymetric Datasets for mapping Japan Trench geomorphology by means of GMT Scripting Toolset. Geodesy and Cartography. Vol. 46(3) p. 98–112. DOI 10.3846/gac.2020.11524.
- LEMENKOVA P. 2020b. Variations in the bathymetry and bottom morphology of the Izu-Bonin Trench modelled by GMT. Bulletin of Geography. Physical Geography Series. Vol. 18(1) p. 41–60. DOI 10.2478/bgeo-2020-0004.
- LEMENKOVA P. 2021a. The visualization of geophysical and geomorphologic data from the area of Weddell Sea by the Generic Mapping Tools. Studia Quaternaria. Vol. 38(1) p. 19–32. DOI 10.24425/sq.2020.133759.
- LEMENKOVA P. 2021b. Geodynamic setting of Scotia Sea and its effects on geomorphology of South Sandwich Trench, Southern Ocean. Polish Polar Research. Vol. 42(1) p. 1–23. DOI 10.24425/ppr.2021.136510.
- LINDH P., LEMENKOVA P. 2021. Evaluation of different binder combinations of cement, slag and CKD for S/S treatment of TBT contaminated sediments. Acta Mechanica et Automatica. Vol. 15 (4) p. 236–248. DOI 10.2478/ama-2021-0030.
- NOVICK K.A., FICKLIN D.L., STOY P.C., WILLIAMS C.A., BOHRER G., OISHI A.C., ..., SCOTT R.L. 2016. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nature Climate Change. Vol. 6(11) p. 1023–1027. DOI 10.1038/nclimate3114.
- PETER B.G., MESSINA J.P., LIN Z., SNAPP S.S. 2020. Crop climate suitability mapping on the cloud: A geovisualization application for sustainable agriculture. Scientific Reports. Vol. 10(15487). DOI 10.1038/s41598-020-72384-x.
- RODRIGUEZ-DOMINGUEZ C.M., HERNANDEZ-SANTANA V., BUCKLEY T.N., FERNÁNDEZ J.E., DIAZ-ESPEJO A. 2019. Sensitivity of olive leaf turgor to air vapour pressure deficit correlates with diurnal maximum stomatal conductance. Agricultural and Forest Meteorology. Vol. 272–273 p. 156–165. DOI 10.1016/j.agrformet.2019.04.006.
- SCHENKE H.W., LEMENKOVA P. 2008. Zur Frage der Meeresboden-Kartographie: Die Nutzung von AutoTrace Digitizer für die Vektorisierung der Bathymetrischen Daten in der Petschora-See [To the question of seafloor mapping: The use of AutoTrace Digitizer for the vectorization of the bathymetric data in the Pechora Sea]. Hydrographische Nachrichten. Vol. 81 p. 16–21. DOI 10.6084/m9.figshare.7435538.
- SUETOVA I.A., USHAKOVA L.A., LEMENKOVA P. 2005. Geoinformation mapping of the Barents and Pechora Seas. Geography and Natural Resources. Vol. 4 p. 138–142. DOI 10.6084/m9.figshare.7435535.
- TADESSE T., SENAY G.B., BERHAN G., REGASSA T., BEYENE S. 2015. Evaluating a satellite-based seasonal evapotranspiration product and identifying its relationship with other satellite-derived products and crop yield: A case study for Ethiopia. International Journal of Applied Earth Observation and Geoinformation. Vol. 40 p. 39–54. DOI 10.1016/j.jag.2015.03.006.
- TAMENE L., ADIMASSU Z., AYNEKULU E., YAEKOB T. 2017. Estimating landscape susceptibility to soil erosion using a GIS-based approach in Northern Ethiopia. International Soil and Water Conservation Research. Vol. 5(3) p. 221–230. DOI 10.1016/j.iswcr.2017.05.002.
- VILLARREAL-GUERRERO F., PINEDO-ALVAREZ A., FLORES-VELÁZQUEZ J. 2020. Control of greenhouse-air energy and vapor pressure deficit with heating, variable fogging rates and variable vent configurations: Simulated effectiveness under varied outside climates. Computers and Electronics in Agriculture. Vol. 174, 105515. DOI 10.1016/j.compag.2020.105515.
- WESSEL P., LUIS J.F., UIEDA L., SCHARROO R., WOBBE F., SMITH W.H.F., TIAN D. 2019. The Generic Mapping Tools version 6. Geochemistry, Geophysics, Geosystems. Vol. 20 p. 5556–5564. DOI 10.1029/2019GC008515.
- WORKU G., TEFERI E., BANTIDER A., DILE Y.T. 2021. Modelling hydrological processes under climate change scenarios in the Jemma sub-basin of upper Blue Nile Basin, Ethiopia. Climate Risk Management. Vol. 31(100272). DOI 10.1016/j.crm.2021.100272.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b8161552-1fd6-41f0-a133-ea62b5f9721c