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Abstract

Nonnegative matrix factorization (NMF) is a popular dimension reduction
technique used for clustering by extracting latent features from high-
dimensional data and is widely used for text mining. Several optimization
algorithms have been developed for NMF with different cost functions. In this
paper we evaluate the correntropy similarity cost function. Correntropy is a 
nonlinear localized similarity measure which measures the similarity between 
two random variables using entropy-based criterion, and is especially robust to
outliers. Some algorithms based on gradient descent have been used for
correntropy cost function, but their convergence is highly dependent on proper 
initialization and step size and other parameter selection. The proposed general 
multiplicative factorization algorithm uses the gradient descent algorithm with
adaptive step size to maximize the correntropy similarity between the data
matrix and its factorization. After devising the algorithm, its performance has 
been evaluated for document clustering. Results were compared with
constrained gradient descent method using steepest descent and L-BFGS 
methods. The simulations show that the performance of steepest descent and L-
BFGS convergence are highly dependent on gradient descent step size which
depends on σ parameter of correntropy cost function. However, the 
multiplicative algorithm is shown to be less sensitive to σ parameterand yields
better clustering results than other algorithms. The results demonstrate that 
clustering performance measured by entropy and purity improve the clustering. 
The multiplicative correntropy-based algorithm also shows less variation in
accuracy of document clusters for variable number of clusters. The convergence
of each algorithm is also investigated, and the experiments have shown that the
multiplicative algorithm converges faster than L-BFGS and steepest descent
method.  

Key words: Nonnegative Matrix Factorization (NMF), Correntropy, 
Multiplicative Algorithm, Document Clustering
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1 Introduction 

Large size of data is one of the central issues in data analysis research.
Processing these large amounts of data opens new issues related to data repre-
sentation, disambiguation, and dimensionality reduction. A useful representa-
tion typically makes latent structure in the data explicit, and often reduces the
dimensionality of the data so that additional computational methods can be 
applied. In this process it is important to reduce the data size without losing its
most essential features. Therefore, a common ground in the various approach-
es of data mining is to replace the original data with a lower dimensional re-
presentation obtained via subspace approximation [1, 2, 4].

There are several methods to reduce the dimensionality of large data such 
as Principal Component Analysis (PCA), Singular Value Decomposition 
(SVD) and Independent Component Analysis (ICA). Often the data to be ana-
lyzed is nonnegative, and the low-rank data are further required to be com-
prised of nonnegative values in order to avoid contradicting physical realities.
However, these classical tools cannot guarantee to maintain the nonnegativity
[1]. Therefore, an approach of finding reduced rank nonnegative factors to
approximate a given nonnegative data matrix becomes a natural choice. The
Nonnegative Matrix Factorization (NMF) approach allows to create a lower 
rank data out of original data, while maintaining nonnegativity of matrices 
entries [1, 2, 3].

The NMF technique approximates a data matrix � with the product of low
rank matrices �and �, such that � � �� and the elements of� and� are 
nonnegative [1,2]. If columns of�would be data samples, then the columns of
�can be interpreted as basis or parts from which data samples are formed,
while the columns of� give the contribution of each basiswhich when com-
bined form the corresponding data sample. In application of NMF to cluster-
ing, it is common to define clusters based on each basis vector, and assigning 
each data sample to a cluster based on basis contribution intensity which is 
found from matrix �. 

Several cost functions have been used in the literature to implement the 
NMF for various types of applications and data type. Euclidean distance is the
most common cost function used for many applications including text mining
[1]. Kullback-Leibler divergence (KL-divergence) [1, 2], �-divergence [21, 
22] are among other methods also used for different applications. However, 
the main issue is to find the matrix factors (�,�) that minimize the chosen 
cost function. There are several optimization algorithms in the literature to
perform this optimum decomposition [3, 4, 8, 10, 11, 12]. Correntropy simi-
larity function is a recently proposed cost function which has been used for 
different tasks of pattern recognition [23]. It has been introduced to NMF only 
recently in [24, 25, 26].  In this paper, a multiplicative algorithm for corren-



Asl E. H., Zurada J. M.

91

tropy-based NMF (MACB-NMF) has been developed and its performance has
been investigated in comparison to general gradient descent method for doc-
ument clustering application using several metrics. 

This paper is organized as follows. Section 2 introduces the correntropy 
cost function. Section 3 discusses some developed optimization algorithms for
NMF. In section 4, a multiplicative update algorithm for correntropy cost 
function (MACB) is presented. Experiments on real data set are presented in 
Section 5. The discussion and conclusions are presented in Section 6. 

2 Correntropy Similarity Function 

Given a data matrix � ∈ ���� and a positive integer � � min ��. ��, find 
nonnegative factorization into matrices � ∈ ���� and � ∈ ���� as 

		���|����,�
��� 	�������	�� � � 0,� � 0																														�1�	

where:
� � 0expresses nonnegativity of the entries of �(and not semidefinite 
positiveness),  
���|���isa measure for goodness of fit such that 

  

���|��� � ���������|�������	

�

���

																																			 �2�

�

���

where:
d�x|y� is a scalar cost function [22].  

Several cost function are used and most of them use the Bregman diver-
gence [7]. Generally, a divergence function is defined as follows 

  

����, �� � ��
�� � ��

�
� ���� � �� 			 ∶ � ∈ �0,1�

������ � ����� � �� � �� 			 ∶ � � 0
																			 �3�

where:
� is chosen to define the type of the divergence function. 

Obviously, ����, �� � �� � ��� is the Euclidean distance function, and 
����, �� defines KL-divergence [13]. The most common function found in
literature is shown below
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Using the above notation, the correntropy cost function is defined as 

  

��������������|�� � ���� �
��� � ���

2�� �																														 �5�

  

��������������|��� � ���exp�
����� � �������

�

2�� �

�

���

�

���

																		 �6�	

  

where:
�is a parameter of correntropy measure. 

The optimization algorithms try to minimize the correntropy, since it is a 
similarity instead of distance between two elements. The algorithm for mini-
mizing these cost functions is introduced in the next section. 

3 Optimization Algorithms 

A key issue of NMF factorization is to minimize the cost function while
keeping elements of � and � matrices nonnegative. Another challenge is the 
existence of local minima due to non-convexity of ���|��� in both �and 
�. Moreover, a unique solution to NMF problem does not exist, since for any 
invertible matrix � whose inverse is ���, a term ������ could also be 
nonnegative. This is most probably the main reason for non-convexity of
���|��� function [13]. 

Several algorithms exist for minimizing cost functions in the NMF context.
Lee and Seung [1, 2] developed a multiplicative algorithm for solving Eucli-
dean and KL-divergence in 2001. Sparse Coding and sparseness constraint 
which impose sparsity on � matrix was proposed by Hoyer in 2002 and 2004 
[3, 5]. Alternating  Least Square (ALS) [12], ALS using projected gradient
descent (ALSPGRAD) [14], gradient descent with constrained least square
(GD-CLS) [9], Quasi Newton method [11], Alternating Nonnegative Con-
strained Least Squares (ANLS) using active set and block principal pivoting
[17, 20], Hierarchical Alternating Least Square (HALS) [19] was proposed for
Euclidean cost function. Fevotte et al proposed several algorithms for mini-
mizing β-divergence cost function [21, 22]. In 2012, Li et al convert general 
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Bregman divergence to Euclidean distance function using Taylor expansion 
and solve the corresponding function using HALS algorithm [25]. Du et al 
proposed a half-quadratic optimization algorithm to solve NMF based on cor-
rentropy cost function and developed a multiplicative algorithm for resulting 
weighted NMF [26].

In 2012, Ensari et al used general algorithms of Constrained Gradient Des-
cent (CGD) method for solving the correntropy function [18] and compared 
the results with projected gradient descent method of Euclidean cost function
[24, 25]. The major disadvantage of CGD is its dependency on � parameter of 
correntropy cost function. As will be shown in the next section, the update 
rate of CGD algorithm is based on this parameter. In the next section, we de-
rive the CGD algorithm based on multiplicative update rule which has adap-
tive update learning rate and less sensitivity to variation of � parameter. 

4 Multiplicative Algorithm for Correntropy-based NMF 

This section proposes a multiplicative algorithm for correntropy cost func-
tion (MACB). To minimize (6) using gradient descent algorithm, its gradient 
should be taken with respect to  � and � matrices� elements which are para-
meters of cost function. The gradients ������, ������are calculated as fol-
lows, 
  

�������‖���� � 1
��� �exp �

��� �����

2�� �⨀��� � ����� 		�7�	

   

�������‖���� � 1
��� �� ���� � ��⨀exp �

��� �����

2�� �� 			 �8�	

where:
⊙is the element-wise product of two matrices. 

As can be seen from Equations(7) and (8), the gradient formula involves
the step size in the direction of gradient that is proportional to 1 σ�⁄  parame-
ter. Therefore, the gradient step variation could cause the solution to deviate
from the limit points of the feasible region. This may result in unsatisfactory 
solution for	�and �. 

The multiplicative gradient descent approach is equivalent to updating 
each parameter by multiplying its value at previous iteration by the ratio of 
the negative and positive parts of the gradient of the cost function with regard 
to this parameter [2, 11]. Suppose there is a function ���� which should be
minimized over �. Gradient descent using multiplicative algorithm is equiva-
lent to, 
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�	 ← �
��	�	�����
��	�	�����

														 (1) 

where:

																																				�� ��� � ��	�	����� �	��	�	�����						 (10)

and the summands are both nonnegative.This ensures nonnegativity of the 
parameter updates, provided initializationis with a nonnegative value. A fixed
point �⋆ of the algorithm implies either ��	���� � 0 or �⋆ � 0[21, 22]. We 
apply this algorithm on Correntropy function gradients, Equations (7) and (8), 
and derive the update formula for � and � matrices respectively as follows, 

  

� ← �
��������‖������
��������‖������

																																						�11�

  

� ← � ⊙
�exp ��

�� �����

2�� �⊙ ����

�exp ��
�� �����

2�� �⊙ �������
																								�12�

  

� ← �
��������‖������
��������‖������

																																								�13�

  

� ← � ⊙
�� �� ⊙ exp ��

�� �����

2�� ��

�� �����⊙ exp ��
�� �����

2�� ��
																								�14�

  

As can be seen from Equations (12) and (14), the � parameter is in nume-
rator and denominator of update algorithm, which reduce the effect of varia-
tion of this parameter to the update algorithm. Although, we do not prove the
non-increasing property of multiplicative update algorithm with Correntropy 
criterion analytically, the experimental results show that it is monotonic and
non-increasing. It also give better results in comparison to other gradient des-
cent methods. Therefore, MACB algorithm for NMF is as follows: 

MACB-NMF Algorithm: 
(1) Initialize � and � with nonnegative values, and scale the columns of �

to unit norm.
(2) Iterate until convergence or for � iterations: 
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(a)   ��� ← ���

�������
��������

��� ��⊙�����
��

������	�
��������

��� ��⊙��������
��
��

			��� � ��� � �� � 10���

(b)   ��� ← ���

�����⊙����
��������

��� ���
��

��������⊙��� �
��������

��� ���
��
��

��������		�� � 10��] 

5 Experiments 

This section outlines the design procedure of an experiment to test MACB 
algorithm. We employ Reuters Documents Corpus for document clustering. 
This original dataset contains 21578 documents and 135 topics or document
clusters created manually. Each document in the corpus is been assigned one
or more topics or category labels based on its content. The size of each cluster
which is the number of documents it contains, range from less than ten to four
thousand. For this experiment, documents associated with only one topic are 
used and topics which contain less than five documents are discarded [9]. 
Therefore, 8293 documents with 48 topics were left at the end.  In order to
evaluate the performance of the MACB for increasing complexity, i.e., the 
number of clusters to be created or the � parameter, ten different � values of
�2, 4, 6, 8, 10, 15, 20, 30, 40, 48� are chosen. 

After creating clusters using NMF, the cluster is assigned to a most related
document topic. For this purpose, a matrix which shows the distribution of all
documents between each created cluster and dataset topics is created. The ma-
trix�s dimension is � � �, which � is the number of clusters and � is the number 
of topics. This matrix is called Document Distribution Matrix (DDM). The 
maximum value at each column of DDM is found first. Then, the correspond-
ing document topic related to this column is assigned to the NMF cluster re-
lated to the row number. At the end of this process, there may be some NMF
clusters which are not assigned to any topic. Some of these clusters may con-
tain large number of documents, and omitting them may reduce the accuracy
metric. To assign these NMF clusters to a topic, the maximum value found in a
row of DDM related to any of these NMF clusters is used for the topic assign-
ment. It turns out that the related column of the founded value indicates the 
topic to be assigned. This method may results in assigning some of NMF clus-
ters to more than one topic. 

We evaluate the clustering performance with Accuracy, Root Mean Square 
Residual (RMSR), Entropy, Purity, and computational time metrics. Accuracy
of clustering is assessed using the metric �� used by [4] is defined 
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�� � ������ �⁄
�

���

																																											�15�

  
where:

����� is set to 1 if �� has the same topic label for both NMF cluster 
and the original topic, and otherwise set to 0,  
� is the total number of documents in the collection. 

The RMSR between � and �and � matrix is de�ned as: 

  

���� � �∑ ���� ������
�

��

� ∗ �
																																		�16�

  

Total entropy for a set of clusters is calculated as the weighted mean of the
entropies of each cluster weighted by the size of each cluster [8]. Using DDM, 
we compute ��� for topic �, the probability that a member of cluster � belongs
to topic � as ��� � ��� ��⁄ , where �� is the number of objects in cluster � and 
��� is the number of documents of topic � in cluster �. Entropy of each cluster 
is defined as: 

  

�� � �� ��� log������
�

���
																																						�17�

  

where:
� is the number of topics. 

Entropy of the full data set as the sum of the entropies of each cluster 
weighted by the size of each cluster: 

  

� � �
��

�
��

�

���

																																																											�18�	

  

where:
� is the number of NMF clusters, 
� is the total number of documents.
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Purity measures the extent to which each NMF cluster contained docu-
ments from primarily one topic [16]. Purity of a NMF clustering is obtained 
as a weighted sum of individual NMF cluster Purity values and is given by

  

����� �
1
��

�������
��																																																			�19�	

  

������ � �
��

�
�����

�

���

																																														�20�

  

where:
��is a particular NMF cluster of size ��,  

��
�is the number of documents of the � � �� topic that were assigned 

to the � � �� NMF cluster,  
�is the number of clusters, 
�is the total number of documents. 

In general, the larger the Purity value, the better the clustering solution. 
We also compute the computational time taken by each minimization algo-
rithms in terms of CPU time measured in second. 

For performance evaluation of MACB, the results of this algorithm were 
compared to Steepest Descent (SD) and L-BFGS methods of gradient descent
algorithm implemented in MATLAB [18], and robust Correntropy Induced
Metric (rCIM) [26]. For each algorithm, three clustering experiments were
executed based on normalization of � and � matrices. As mentioned before, 
NMF does not have a unique solution, and it is better to normalize either W or 
H to have a consistent factorization of a particular dataset when using differ-
ent algorithms. This procedure is also taken to investigate the effect of norma-
lization of these � and � matrices on the clustering result. Therefore, we 
implement three experiments for each algorithm, one without normalization, 
another using normalization of � matrix�s columns, and the last one with 
normalization on each row of � matrix.

Since � value has an effect on update learning rate of SD, L-BFGS and 
rCIM algorithms, improper selection of �could result in poor clustering. 
However, � value have a small effect on MACB update algorithm, because 
the effect of � is significantly decreased by the division in formula of MACB 
algorithm. Moreover, the learning rate is adaptive and is proportional to �
and � matrices in each step of MACB algorithm. By implementing several
experiments, we realize that the best value which yields the highest AC, low-
est Entropy and highest Purity in clustering for each algorithm is � � 1. We 
continue the experiment with three methods of normalization for MACB algo-
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rithm and compare them to �-normalized case (normalization on each col-
umn of � matrix) for SD, L-BFGS, and rCIM algorithms with � � 1 for
three algorithms of optimization. AC, Entropy and Purity of clustering are 
shown in Figure 1-3 respectively,

Figure 1. Accuracy of SD, L-BFGS, rCIM, and MACB algorithm
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Figure 2. Entropy of SD, L-BFGS, and MACB algorithm

Figure 3. Purity of SD, L-BFGS, and MACB algorithm
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It is clear that MACB algorithm yields smaller Entropy and higher Purity 
for all values of �. However, SD, L-BFGS, and rCIM algorithms have low 
Entropy and high Purity only for � � �6,8,10�. On the other hand, MACB 
have a consistent change in AC, Entropy, and Purity for different values of �. 
Moreover, as � increase, the quality of clustering improves for MACB. To 
have a good comparison between all algorithms, we select two values of �
which results in highest AC, lowest Entropy and highest Purity. According to
Fig.1-3, these metrics occurs in � � �15, 19�. Therefore we tabulate the clus-
tering result of each algorithm for corresponding � values in Table 1 and 2.

Tables 1 and 2 indicate that MACB algorithm give better Entropy and Pur-
ity in comparison to the other algorithms. The RMSR metric is also small for 
MACB algorithm, while this metric is too large for SD, L-BFGS and rCIM. 
This indicates a large error between ��and�. One may notice that the com-
putational time of MACBand rCIM algorithms is higher than SD and L-BFGS 
algorithms. The reason is that in each step of algorithm, there are two multip-
lications and divisions for updating � and � in MACB and rCIM algorithms, 
which do not exist in SD and L-BFGS algorithms. The multiplication and 
division of these large matrices are highly computational and time consuming. 

As a result, we can conclude that the computed � and � matrices using 
MACB algorithm offer the best approximation of documents dataset among 
other correntropy-based NMF. The minimization of correntropy cost function 
for 40 iterations is shown in Fig.4 for all algorithms. It demonstrates that
MACB algorithm has a faster convergence than SD, L-BFGS and rCIM algo-
rithms. Gradient minimization curve for � � 20,30,40,48 is shown in Figure
5. It indicates that as the value of � increases, the gradient minimizes more
slowly. This implies that the algorithm reaches the limit point of feasible re-
gion, and the constraint of nonnegativity does not allow the optimization algo-
rithm to converge. We propose that other algorithms like alternating least
square method with nonnegativity constraint and hierarchical ALS could be
investigated on this case for future work. 

Table 1. Comparison between performance of different NMF algorithms, k=15

Algorithm RMSR Accuracy Entropy Purity CPU 
time (sec) 

SD 1983 0.9401 2.8834 0.4582 552 

L-BFGS  2517 0.1469 2.8634 0.4496 602 
MACB  
(W-normalized) 

0.3328 0.5530 1.8920 0.6514 2353 

MACB  
(H-normalized)

0.3328 0.7528 1.9191 0.6551 2353 
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Table 2. Comparison between performance of different NMF algorithms, k=20

Algorithm RMSR Accuracy Entropy Purity CPU 
time (sec) 

SD 53594 0.8961 2.8616 0.4527 535

L-BFGS  17.75 0.6274 2.8399 0.4496 605
Multiplicative 
(W-normalized) 

0.9776 0.5507 1.8094 0.6475 2513

Multiplicative 
(H-normalized) 

0.9776 0.5360 1.8567 0.6479 2513

Figure 4. Correntropy cost function minimization curve
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Figure 5. History of norm of cost function�sgradient

6 Conclusion 

In this paper, a multiplicative algorithm for NMF based on correntropy 
cost function is developed. Its performance was tested on the Reuters Docu-
ment Corpus for document clustering.  The clustering result is also compared
to gradient descent algorithm using SD and L-BFGS algorithms using com-
mon clustering evaluation measures. The minimization curve and curve of 
gradient�s norm of cost function are also investigated. The result proves that 
MACB algorithm gives better clustering performance in terms of Entropy and 
Purity and also faster convergence than other two methods. However, it shows 
that by increasing the number of NMF clusters (� value), gradient curve of 
cost function does not converge appropriately. For future work, we propose 
that other minimization algorithms like ALS, ANLS, and HALS could be 
used for improving this problem.
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