PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Isolation and characterisation of bacteria degrading polycyclic aromatic hydrocarbons : phenanthrene and anthracene

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim was to isolate and characterise bacteria that can be used to degrade phenanthrene and anthracene. Bacteria were isolated by enrichment of contaminated soil in mineral medium. Growth profiles were assessed by colony forming units (CFU). Electron microscopy and 16S rRNA gene sequencing were employed to characterise these bacteria. Growth profiles were quantified by analysing the culture doubling time, and both the quantification of utilisation of aromatic compounds and the detection of phenanthrane metabolites were carried out by gas chromatography and mass-spectrometry. Two co-cultures of phenanthrene- and anthracene-biodegrading bacteria (PHEN-Cult and ANT-Cult, respectively) were isolated and characterised. The two co-cultures grew rapidly, reaching maximum counts of 1010 CFU/mL, within 2–10 days. The doubling time (dt) fell between 0.5–1.5 day (at PHEN and ANT concentrations of 1–100 ppm), making them among the most active PAH degrading microorganisms described so far. PHEN-Cult consists of two strains, Pseudomonas citronellolis, PHC3Z1A, and Stenotrophomonas maltophilia, JPHC3Z2B, while ANT-Cult is made of Ralstonia pickettii, JANC1A and Thermomonas haemolytica, JANC2B. Both co-cultures were more active at pH 7, 0–4% NaCl, and 37–40°C. They were also able to utilise naphthalene, salicylic acid and catechol. Starting with 100 ppm, within 15 days, 50–75% of PHEN and ANT were degraded, and the following were the PHEN metabolites that were identified: 3-naphthyl-allyl alcohol, phthalic acid ethyl diester, 2-hydroxybenzalpyruvic acid-methyl ester. These bacteria are appropriate for the removal of PHEN and ANT in contaminated environments, thus further studies are warranted to establish their ability to remove these PAHs in pilot and large scale.
Rocznik
Strony
43--54
Opis fizyczny
Bibliogr. 41 poz., tab., wykr.
Twórcy
autor
  • King Fahad University of Petroleums and Minerals, Saudi Arabia
autor
  • King Fahad University of Petroleums and Minerals, Saudi Arabia
autor
  • King Fahad University of Petroleums and Minerals, Saudi Arabia
autor
  • King Fahad University of Petroleums and Minerals, Saudi Arabia
Bibliografia
  • 1. Ahmed, A.T., Othman, M.A., Sarwade, V.D. & Kachru, G.R. (2012). Degradation of anthracene by alkaliphilic bacteria bacillus badius, Environment and Pollution, 1, 2, pp. 97–104.
  • 2. Al-Thukair, A.A. & Malik, K. (2016). Pyrene metabolism by the novel bacterial strains Burkholderia fungorum (T3A13001) and Caulobacter sp (T2A12002) isolated from an oil-polluted site in the Arabian Gulf, International Biodeterioration & Biodegradation, 110, pp. 32–37.
  • 3. Bacosa, H.P. & Inoue, C. (2015). Polycyclic aromatic hydrocarbons (PAHs) biodegradation potential and diversity of microbial consortia enriched from tsunami sediments in Miyagi, Japan, Journal of Hazardous Material, 283, pp. 689–697.
  • 4. Barceló, D. & Petrovic, M. (2008). Emerging contaminants from industrial and municipal waste removal technologies, Springer Berlin Heidelberg, 2008.
  • 5. Bisht, S., Pandey, P., Sood, A., Sharma, S. & Bisht, N.S. (2010). Biodegradation of naphthalene and anthracene by chemo-tactically active rhizobacteria of Populus deltoides, Brazilian Journal of Microbiology, 41, 4, pp. 922–930.
  • 6. Bostrom, C.E., Gerde, P., Hanberg, A., Jernström, B., Johansson, C., Kyrklund, T., Rannug, A., Törnqvist, M., Victorin, K. & Westerholm, R. (2002). Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air, Environmental Health Perspectives 110, 3, pp. 451–488.
  • 7. Bragin, G.E., Parkerton, T.F., Redman, A.D., Letinksi, D.J., Butler, J.D., Paumen, M.L., Sutherland, C.A., Knarr, T.M., Comber, M. & den Haan, K. (2016). Chronic toxicity of selected polycyclic aromatic hydrocarbons to algae and crustaceans using passive dosing, Environmental Toxicololgy and Chemistry 35, 12, pp. 2948–2957.
  • 8. Ceyhan, N. (2012). Biodegradation of pyrene by a newly isolated Proteus vulgaris, Scientific Research and Essays, 7, 1, pp. 66–77.
  • 9. DasSarma, S. & DasSarma, P. (2012). Halophiles, In: eLS. John Wiley & Sons, Ltd: Chichester, pp. 1–11.
  • 10. Desaules, A., Ammann, S., Blum, F., Brändli, R.C., Bucheli, T.D. & Keller, A. (2008). PAH and PCB in soils of Switzerland-status and critical review, Journal of Environmental Monitoring, 10, 11, pp. 1265–1277.
  • 11. Eibes, G., Cajthaml, T., Moreira, M.T., Feijooa, G. & Lema, J.M. (2006). Enzymatic degradation of anthracene, dibenzothiophene and pyrene by manganese peroxidase in media containing acetone, Chemosphere, 64, 3, pp. 408–414.
  • 12. Fathepure, B.Z. (2014). Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments, Front Microbiology, 5, 173, pp. 1–16.
  • 13. Feng, T.C., Cui, C.Z., Dong, F., Feng, Y.Y., Liu, Y.D. & Yang, X.M. (2012). Phenanthrene biodegradation by halophilic Martelella sp. AD-3, Journal of Applied Microbiology, 113, 4, pp. 779–89.
  • 14. Haritash, A.K. & Kaushik, C.P. (2009). Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review, Journal of Hazardous Materials, 169, 1, pp. 1–15.
  • 15. Janbandhu, A. & Fulekar, M.H. (2011). Biodegradation of phenanthrene using adapted microbial consortium isolated from petrochemical contaminated environment, Journal of Hazardous Materials, 187, 1, pp. 333–340.
  • 16. Kanaly, R.A. & Harayama, S. (2010). Advances in the field of high-molecular-weight polycyclic aromatic hydrocarbon biodegradation by bacteria, Microbial Biotechnology, 3, 2, pp. 136–164.
  • 17. Kim, Y.H., Freeman, J.P., Moody, J.D., Engesser, K.H. & Cerniglia, C.E. (2005). Effects of pH on the degradation of phenanthrene and pyrene by Mycobacterium vanbaalenii PYR-1, Applied Microbiology and Biotechnology, 67, 2, pp. 275–285.
  • 18. Kim, Y.M., Ahn, C.K., Woo, S.H., Jung, G.Y. & Park, J.M. (2009). Synergic degradation of phenanthrene by consortia of newly isolated bacterial strains, Journal of Biotechnology, 144, 4, pp. 293–298.
  • 19. Komal, J., Kumar, M.A., Kumar, N.A., Thiruvengadaravi, K.V., Nilavunesan, D., Premkumar, M.P., Kumar, V.V. & Sivanesan, S. (2017). Indigenously acclimatized bacterial consortium for anthracene biotransformation, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 39, 5, pp. 528–537.
  • 20. Leahy, J.G. & Colwell, R.R. (1990). Microbial degradation of hydrocarbons in the environment, Microbiological Reviews, 54, 3, pp. 305–315.
  • 21. Mangwani, N., Shukla, S.K., Kumari, S., Rao, T.S. & Das, S. (2014). Characterization of Stenotrophomonas acidaminiphila NCW-702 biofilm for implication in the degradation of polycyclic aromatic hydrocarbons, Journal of Applied Microbiology, 117, 4, pp.1012–1024.
  • 22. Martins, L.F. & Peixoto, R.S. (2012). Biodegradation of petroleum hydrocarbons in hypersaline environments, Brazilian Journal of Microbiology, 43, 3, pp. 865–872.
  • 23. Masakorala, K., Yao, J., Cai, M., Chandankere, R., Yuan, H. & Chen, H. (2013). Isolation and characterization of a novel phenanthrene (PHE) degrading strain Pseudomonas sp. USTB-RU from petroleum contaminated soil, Journal of Hazardous Materials, 263, 2, pp. 493–500.
  • 24. Nie, M., Nie, H., Cao, W., Wang, X., Guo, Y., Tian, X., Yin, X. & Wang, Y. (2016). Phenanthrene metabolites from a new polycyclic aromatic hydrocarbon-degrading bacterium Aeromonas salmonicida subsp. Achromogenes strain NY4, Polycyclic Aromatic Compounds, 36, 2, pp. 132–151.
  • 25. Nzila, A. (2013). Update on the cometabolism of organic pollutants by bacteria, Environmental Pollution, 178, pp. 474–482.
  • 26. Nzila, A., Thukair, A., Sankara, S., Chanbasha, B. & Musa, M.M. (2016). Isolation and characterization of naphthalene biodegrading Methylobacterium radiotolerans bacterium from the eastern coastline of the Kingdom of Saudi Arabia, Archives of Environmental Protection, 42, pp. 25–32.
  • 27. Oyehan, T.A. & Al-Thukair, A.A. (2017). Isolation and characterization of PAH-degrading bacteria from the Eastern Province, Saudi Arabia, Marine Pollution Bulletin, 115, 1, pp. 39–46.
  • 28. Patel, V., Cheturvedula, S. & Madamwar, D. (2012). Phenanthrene degradation by Pseudoxanthomonas sp. DMVP2 isolated from hydrocarbon contaminated sediment of Amlakhadi canal, Gujarat, India, Journal of Hazardous Materials, 201, pp. 43–51.
  • 29. Pinyakong, O., Habe, H., Supaka, N., Pinpanichkarn, P., Juntongjin, K., Yoshida, T., Furihata, K., Nojiri, H., Yamane, H. & Omori, T. (2000). Identification of novel metabolites in the degradation of phenanthrene by Sphingomonas sp. strain P2, FEMS Microbiology Letters, 191, 1, pp. 115–121.
  • 30. Seo, J.S., Keum, Y.S. & Li, Q.X. (2009). Bacterial degradation of aromatic compounds, International Journal of Environmental Research and Public Health, 6, 1, pp. 278–309.
  • 31. Swaathy, S., Kavitha, V., Pravin, A.S., Mandal, A.B. & Gnanamani, S. (2014). Microbial surfactant mediated degradation of anthracene in aqueous phase by marine Bacillus licheniformis MTCC 5514, Biotechnology Reports, 4, pp.161–170.
  • 32. Sydow, M., Owsianiak, M., Szczepaniak, Z., Framski, G., Smets, B.F., Ławniczak, Ł., Lisiecki, P., Szulc, A., Cyplik, P., Chrzanowski, Ł. (2016). Evaluating robustness of a diesel-degrading bacterial consortium isolated from contaminated soil, New Biotechnology, 33, 6, pp. 852–859.
  • 33. Szczepaniak, Z., Czarny, J., Szczepaniak, Z., Framski, G., Smets, B.F., Ławniczak, Ł., Lisiecki, P., Szulc, A., Cyplik, P. & Chrzanowski, Ł. (2016). Influence of soil contamination with PAH on microbial community dynamics and expression level of genes responsible for biodegradation of PAH and production of rhamnolipids, Environmental Science and Pollution Research International, 23, 22, pp. 23043–23056.
  • 34. Tao, X.Q., Lu, G.N., Liu J.P., Li, T. & Yang, L.N. (2009). Rapid degradation of phenanthrene by using Sphingomonas sp. GY2B immobilized in calcium alginate gel beads, International Journal Environmental Research Public Health, 6, 9, pp. 2470–2480.
  • 35. Ubani, O., Atagana Harrison, I., Thantsha Mapitsi, S. & Rasheed, A. (2016). Identification and characterisation of oil sludge degrading bacteria isolated from compost, Archives of Environmental Protection 42, 2, pp. 67–77.
  • 36. Wang, F., Liu, Y. Tang, Z., Hou, M., Wang, C., Wang, X., Wang, Q. & Xiao, Q. (2017). Simultaneous determination of 15 phthalate esters in commercial beverages using dispersive liquid-liquid microextraction coupled to gas chromatography-mass spectrometry, Analytical Methods, 9, 12, pp. 1912–1919.
  • 37. Wang, L., Zheng, S., Wang, D., Wang, L., Wang, G. (2014). Thermomonas carbonis sp. nov., isolated from the soil of a coal mine, International Journal of Systematic and Evolutionary Microbiology 64, 11, pp. 3631–3635.
  • 38. Wu, M., Chen, L., Tian, Y., Ding, Y. & Dick, W.A. (2013). Degradation of polycyclic aromatic hydrocarbons by microbial consortia enriched from three soils using two different culture media, Environmental Pollution, 178, pp. 152–158.
  • 39. Ye, J.S., Yin, H., Qiang, J., Peng, H., Qin, H.M., Zhang, N., He, B.Y. (2011). Biodegradation of anthracene by Aspergillus fumigatus, Journal of Hazardous Materials 185, 1, pp. 174–181.
  • 40. Zeinali, M., Vossoughi, M. & Ardestani, S.K. (2008). Degradation of phenanthrene and anthracene by Nocardia otitidiscaviarum strain TSH1, a moderately thermophilic bacterium, Journal of Applied Microbiology, 105(2), pp. 398–406.
  • 41. Zhong, Y., Luan, T., Lin, L., Liu, H. & Tam, N.F. (2011). Production of metabolites in the biodegradation of phenanthrene, fluoranthene and pyrene by the mixed culture of Mycobacterium sp. and Sphingomonas sp., Bioresource Technology, 102(3), 2965–2972
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b8060b86-4850-41fb-82d6-dda0a82acc11
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.