PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Theoretical studies of interactions in cyprodinil-α-cyclodextrin and cyprodinil-β-cyclodextrin systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of theoretical calculations in terms of the G4MP2 composite method for cyprodinil-α-cyclodextrin (C0@α-CD) and cyprodinil-β-cyclodextrin (C0@β-CD) systems. Studies also covered analogous systems consisting of the anion (C-) and the cation (C+) of cyprodinil. The geometries of the cyprodinil molecule and ions were optimized on the basis of the DFT theory, using hybrid (B3LYP, PBE0), pure (B97-D) and “meta” (M06-2X) GGA functionals for selected Pople basis sets [6-311++G(d,p), 6-311++G(2d,p), 6-311++G(2d,2p)] and Dunning basis set (aug-cc-pVDZ). The research results suggest that the affinity of “guest” molecules for “hosts” is relatively low. Theoretical studies of the “guest-host” systems allow to predict the properties of the designed preparations.
Wydawca
Rocznik
Tom
Strony
9--20
Opis fizyczny
Bibliogr. 74 poz., rys., tab.
Twórcy
  • Institute of Technology and Life Sciences – National Research Institute, Falenty, 3 Hrabska Avenue, 05-090 Raszyn, Poland
Bibliografia
  • Adamo, C. and Barone, V. (1999) “Toward reliable density functional methods without adjustable parameters: The PBE0 model,” Journal of Chemical Physics, 110(13), pp. 6158–6170.
  • Alexandrino, G.L. et al. (2013) “Spectroscopic (fluorescence, 1D-ROESY) and theoretical studies of the thiabendazole and β-cyclodextrin inclusion complex,” Journal of Inclusion Phenomena and Macrocyclic Chemistry, 75(1–2), pp. 93–99. Available at: https://doi.org/10.1007/s10847-012-0150-8.
  • Alonso, M.L. et al. (2014) “Pesticides microencapsulation. A safe and sustainable industrial process,” Journal of Chemical Technology &Amp; Biotechnology, 89(7), pp. 1077–1085. Available at: https://doi.org/10.1002/jctb.4204.
  • Avenot, H.F. et al. (2018) “Different levels of resistance to cyprodinil and iprodione and lack of fludioxonil resistance in Botrytis cinerea isolates collected from pistachio, grape, and pomegranate fields in California,” Crop Protection, 112, pp. 274–281. Available at: https://doi.org/10.1016/j.cropro.2018.06.005.
  • Babij, J. et al. (2000) “Resistance risk assessment of cereal eyespot, Tapesia yallundae and Tapesia acuformis, to the anilinopyrimidine fungicide, cyprodinil,” European Journal of Plant Pathology, 106(9), pp. 895–905. Available at: https://doi.org/10.1023/a:1008774821945.
  • Báez, M.E., Espinoza, J. and Fuentes, E. (2018) “Degradation kinetics of chlorpyrifos and diazinon in volcanic and non-volcanic soils: Influence of cyclodextrins,” Environmental Science and Pollution Research, 25(25), pp. 25020–25035. Available at: https://doi.org/10.1007/s11356-018-2559-0.
  • Becke, A.D. (1993) “Density-functional thermochemistry. III. The role of exact exchange,” Journal of Chemical Physics, 98(7), pp. 5648–5652.
  • Becke, A.D. (1996) “Density-functional thermochemistry. IV. A new dynamical correlation functional and implications for exactexchange mixing,” Journal of Chemical Physics, 104(3), pp. 1040–1046.
  • Becke, A.D. (1997) “Density-functional thermochemistry. V. Systematic optimization of exchangecorrelation functionals,” Journal of Chemical Physics, 107(20), pp. 8554–8560.
  • Benfeito, S. et al. (2013) “Host-guest interaction between herbicide oxadiargyl and hydroxypropyl-β-cyclodextrin,” The Scientific World Journal, 2013, pp. 1–6. Available at: https://doi.org/10.1155/2013/825206.
  • Cassano, A. et al. (2013) “PAN hollow fibre membranes with triacetyl-β-cyclodextrin for the removal of pesticides from citrus essential oils,” Separation and Purification Technology, 116, pp. 124–130. Available at: https://doi.org/10.1016/j.seppur.2013.05.029.
  • Coly, A. and Aaron, J.J. (1998) “Cyclodextrin-enhanced fluorescencje and photochemically-induced fluorescence determination of five aromatic pesticides in water,” Analytica Chimica Acta, 360, pp. 129–141.
  • Coscarello, E.N. et al. (2009) “Comparative analysis of complexation of pesticides (fenitrothion, methylparathion, parathion) and their carboxylic ester analogues by β-cyclodextrin. Theoretical semi-empirical calculations,” Journal of Structural Chemistry, 50(4), pp. 671–679. Available at: https://doi.org/10.1007/s10947-009-0103-2.
  • Crini, G. et al. (2017) “Simultaneous removal of five triazole fungicides from synthetic solutions on activated carbons and cyclodextrin-based adsorbents,” Heliyon, 3(8), e00380. Available at: https://doi.org/10.1016/j.heliyon.2017.e00380.
  • Cserhati, T. et al. (2002) “Interaction of pesticides with a β-cyclodextrin derivative studied by reversed-phase thin-layer chromatography and principal component analysis,” Journal of Inclusion Phenomena and Macrocyclic Chemistry, 42, pp. 235–240.
  • Curtiss, L.A., Redfern, P.C. and Raghavachari, K. (2007a) “Gaussian-4 theory,” The Journal of Chemical Physics, 126(8), 084108. Available at: https://doi.org/10.1063/1.2436888.
  • Curtiss, L.A., Redfern, P.C. and Raghavachari, K. (2007b) “Gaussian-4 theory using reduced order perturbation theory,” The Journal of Chemical Physics, 127(12), 124105. Available at: https://doi.org/10.1063/1.2770701.
  • Ditchfield, R., Hehre, W.J. and Pople, J.A. (1971) “Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules,” Journal of Chemical Physics, 54(2), pp. 724–728.
  • Dodziuk, H. (2002a) Introduction to supramolecular chemistry. New York, United States: Springer Publishing.
  • Dodziuk, H. (2002b) “Rigidity versus flexibility. A review of experimental and theoretical studies pertaining to the cyclodextrin nonrigidity,” Journal of Molecular Structure, 614, pp. 33–45.
  • Dodziuk, H. (ed.) (2006) Cyclodextrins and their complexes: Chemistry, analytical methods, applications. Hoboken, NJ, United States: Wiley.
  • Dunning, T.H., Jr. (1989) “Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen,” Journal of Chemical Physics, 90(2), pp. 1007–1023.
  • Ferino-Pérez, A. et al (2019) “Evaluation of the molecular inclusion process of β-hexachlorocyclohexane in cyclodextrins,” RSC Advances, 9(47), pp. 27484–27499. Available at: https://doi.org/10.1039/c9ra04431k.
  • Fernandes, C. et al. (2014) “Influence of hydroxypropyl-β-cyclodextrin on the photostability of fungicide pyrimethanil,” International Journal of Photoenergy, 2014, pp. 1–8. Available at: https://doi.org/10.1155/2014/489873.
  • Fernández-Ortuño, D., Chen, F. and Schnabel, G. (2013) “Resistance to cyprodinil and lack of fludioxonil resistance in Botrytis cinerea isolates from strawberry in North and South Carolina,” Plant Disease, 97(1), pp. 81–85. Available at: https://doi.org/10.1094/pdis-06-12-0539-re.
  • Fiaccadori, R. (2018) “In vitro, in vivo and in field sensitivity of Venturia inaequalis to anilinopyrimidine fungicides with different types of scab management and degree of control,” OALib, 05 (12), pp. 1–13. Available at: https://doi.org/10.4236/oa-lib.1105092.
  • Fifere, A. et al. (2012) “Theoretical study on β-cyclodextrin inclusion complexes with propiconazole and protonated propiconazole,” Beilstein Journal of Organic Chemistry, 8, pp. 2191–2201. Available at: https://doi.org/10.3762/bjoc.8.247.
  • Galian, R.E., Bracamonte, A.G. and Veglia, A.V. (2005) “Hydroxypropyl-β-cyclodextrin effect on the fluorescence of auxin and skatole and on the simultaneous determination of binary mixtures of indole compounds in urine by first derivative spectrofluorimetry,” Analytica Chimica Acta, 540(2), pp. 393–401. Available at: https://doi.org/10.1016/j.aca.2005.03.009.
  • Garrido, E.M. et al. (2012) “Host-guest complexes of phenoxy alkil acid herbicides and cyclodextrins. MCPA and β-cyclodextrin,” Journal of Environmental Science and Health, Part B, 47(9), pp. 869–875. Available at: https://doi.org/10.1080/03601234.2012.693867.
  • Ge, X. et al. (2011) “Inclusion complexation of chloropropham with β-cyclodextrin: Preparation, characterization and molecular modeling,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 81(1), pp. 397–403. Available at: https://doi.org/10.1016/j.saa.2011.06.028.
  • Grimme, S. (2006) “Semiempirical GGA-type density functional constructed with a long-range dispersion correction,” Journal of Computational Chemistry, 27(15), pp. 1787–1799. Available at: https://doi.org/10.1002/jcc.20495.
  • Gurarslan, A. et al. (2015) “Pyriproxyfen cyclodextrin inclusion compounds,” Journal of Inclusion Phenomena and Macrocyclic Chemistry, 82(3–4), pp. 489–496. Available at: https://doi.org/10.1007/s10847-015-0526-7.
  • Hariharan, P.C. and Pople, J.A. (1973) “The influence of polarization functions on molecular orbital hydrogenation energies,” Theoretica Chimica Acta, 28, pp. 213–222.
  • Hebeish, A. et al. (2014) “New textiles of biocidal activity by introduce insecticide in cotton-poly (GMA) copolymer containing β-Cd,” Carbohydrate Polymers, 99, pp. 208–217. Available at: https://doi.org/10.1016/j.carbpol.2013.08.002.
  • Hirayama, K. (2022) “Curative effects of fungicides against Venturia inaequalis causing apple scab,” Journal of General Plant Pathology, 88(4), pp. 264–269. Available at: https://doi.org/10.1007/s10327-022-01071-8.
  • Hohenberg, P. and Kohn, W. (1964) “Inhomogeneous electron gas,” Physical Review, 136(3B), pp. B 864-B 871.
  • Hołaj-Krzak, J.T. (2021) “Lack of the ‘long-distance’ dynamical cooperative interactions due to low symmetry of hydrogen-bonded malonic acid aggregates in molecular crystals,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 246, 118993. Available at: https://doi.org/10.1016/j.saa.2020.118993.
  • Huang, Z. et al. (2014) “Complexation of chlorpropham with hydroxypropyl-β-cyclodextrin and its application in potato sprout inhibition,” Carbohydrate Polymers, 107, pp. 241–246. Available at: https://doi.org/10.1016/j.carbpol.2014.02.072.
  • Iványi, R. et al. (2004) “Influence of (hydroxy)alkylamino substituents on enantioseparation ability of single-isomer amino-β-cyclodextrin derivatives in chiral capillary electrophoresis,” Electrophoresis, 25(16), pp. 2675–2686. Available at: https://doi.org/10.1002/elps.200406030.
  • Jeon, Y. et al. (2015) “Crystal structure of cyprodinil,” Acta Crystallographica Section E Crystallographic Communications, 71(1), pp. o5–o5. Available at: https://doi.org/10.1107/S2056989-014025742.
  • Juvancz, Z. and Szejtli, J. (2002) “The role of cyclodextrins in chiral selective chromatography,” Trends in Analytical Chemistry, 21(5), pp. 379–388.
  • Kohn, W. and Sham, L.J. (1965) “Self-consistent equations including exchange and correlation effects,” Physical Review, 140(4A), pp. A 1133-A 1138.
  • Köhler, G., Viernstein, H. and Wolschann, P. (1996) “Molecular calculations and thermodynamical considerations on the solubility enhancement of triflumizole by cyclodextrin complexation,” Journal of Inclusion Phenomena and Molecular Recognition in Chemistry, 25, pp. 237–241.
  • Köller, W., Wilcox, W.F. and Parker, D.M. (2005) “Sensitivity of Venturia inaequalis populations to anilinopyrimidine fungicides and their contribution to scab management in New York,” Plant Disease, 89(4), pp. 357–365. Available at: https://doi.org/10.1094/pd-89-0357.
  • Landy, D. et al. (2012) “Remediation technologies using cyclodextrins: An overview,” Environmental Chemistry Letters, 10(3), pp. 225–237. Available at: https://doi.org/10.1007/s10311-011-0351-1.
  • Lawtrakul, L., Inthajak, K. and Toochinda, P. (2014) “Molecular calculations on β-cyclodextrin inclusion complexes with five essential oil compounds from Ocimum basilicum (sweet basil),” ScienceAsia, 40(2), 145. Available at: https://doi.org/10.2306/scienceasia1513-1874.2014.40.145.
  • Leroux, P. et al. (2012) “Fungicide resistance status in French populations of the wheat eyespot fungi Oculimacula acuformis and Oculimacula yallundae,” Pest Management Science, 69(1), pp. 15–26. Available at: https://doi.org/10.1002/ps.3408.
  • Lezcano, M. et al. (2001) “Complexation of several benzimidazole-type fungicides with α- and β-cyclodextrins,” Journal of Agricultural and Food Chemistry, 50(1), pp. 108–112. Available at: https://doi.org/10.1021/jf010927y.
  • Lezcano, M. et al. (2003) “Complexation of several fungicides with β-cyclodextrin: Determination of the association constants and isolation of the solid complexes,” Journal of Agricultural and Food Chemistry, 51(17), pp. 5036–5040. Available at: https://doi.org/10.1021/jf0343682.
  • Lindner, K. and Saenger, W. (1982) “Crystal and molecular structure of cyclohepta-amylose dodecahydrate,” Carbohydrate Research, 99(2), pp. 103–115. Available at: https://doi.org/10.1016/s0008-6215(00)81901-1.
  • Lipták, A. et al. (2002) “Mixed acetals of cyclodextrins. Preparation of hexakis-, heptakis- and octakis[2,6-di-O-(methoxydimethyl) methyl]-α-, β- and γ-cyclodextrins,” Carbohydrate Research, 337, pp. 93–96.
  • Liu, G. et al. (2017) “Metal–organic framework preparation using magnetic graphene oxide–β-cyclodextrin for neonicotinoid pesticide adsorption and removal,” Carbohydrate Polymers, 175, pp. 584–591. Available at: https://doi.org/10.1016/j.carbpol.2017.06.074.
  • Lu, H. et al. (2015) “Molecular dynamics simulation and TDDFT study of the structures and UV–vis absorption spectra of MCT-β-CD and its inclusion complexes,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 149, pp. 564–570. Available at: https://doi.org/10.1016/j.saa.2015.04.102.
  • Pereira, R.A. et al. (2016) “Theoretical inclusion of deprotonated 2,4-D and dicamba pesticides in ß-cyclodextrin,” Journal of Inclusion Phenomena and Macrocyclic Chemistry, 86(3–4), pp. 343–349. Available at: https://doi.org/10.1007/s10847-016-0665-5.
  • Petrović, G. et al. (2013) “Inclusion complexes of pesticides in aqueous solutions of methylated-β-cyclodextrin,” Chemical Industry, 67(2), pp. 231–237. Available at: https://doi.org/10.2298/hemind120413068p.
  • Pieczul, K. and Korbas, M. (2014) “Fungicide resistance level of Oculimacula acuformis and O. yallundae isolates – the causa agents of eyespot,” Progress in Plant Protection, 54(3), pp. 339–344. Available at: https://doi.org/10.14199/ppp-2014-055.
  • Redenti, E., Szente, L. and Szejtli, J. (1999) “Drug/cyclodextrin/hydroxy acid multicomponent systems. Properties and pharmaceutical applications,” Journal of Pharmaceutical Sciences, 89(1), pp. 1–8.
  • Rekik, N. et al. (2008) “Experimental and theoretical study of the polarized infrared spectra of the hydrogen bond in 3-thiophenic acid crystal,” Journal of Computational Chemistry, 31(3), pp. 463–375. Available at: https://doi.org/10.1002/jcc.21324.
  • Rekik, N. et al. (2019) “Towards accurate infrared spectral density of weak H-bonds in absence of relaxation mechanisms,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 207, pp. 197–208. Available at: https://doi.org/10.1016/j.saa.2018.09.003.
  • Richardson, J.R. et al. (2019) “Neurotoxicity of pesticides,” Acta Neuropathologica, 138(3), pp. 343–362. Available at: https://doi.org/10.1007/s00401-019-02033-9.
  • Rode, T. et al. (2003) “Complex formation of sericoside with hydrophilic cyclodextrins: improvement of solubility and skin penetration in topical emulsion based formulations,” European Journal of Pharmaceutics and Biopharmaceutics, 55(2), pp. 191–198. Available at: https://doi.org/10.1016/s0939-6411(02)00194-7.
  • Salman, S. et al. (2022) “Elucidating the theoretical evolution of the IR spectral density and the potential energy surfaces of hydrogen bonded complexes: A quantum dynamical study,” Chemical Physics Letters, 791, 139380. Available at: https://doi.org/10.1016/j.cplett.2022.139380.
  • Sha, J.-Q. et al. (2016) “Nontoxic and renewable metal–organic framework based on α-cyclodextrin with efficient drug delivery,” RSC Advances, 6(86), pp. 82977–82983. Available at: https://doi.org/10.1039/c6ra16549d.
  • Sholberg, P.L., Bedford, K.E. and Stokes, S. (2003) “Effect of preharvest application of cyprodinil on postharvest decay of apples caused by Botrytis cinerea,” Plant Disease, 87(9), pp. 1067–1071. Available at: https://doi.org/10.1094/pdis.2003.87.9.1067.
  • Singh, M., Sharma, R. and Banerjee, U.C. (2002) “Biotechnological applications of cyclodextrins,” Biotechnology Advances, 20, pp. 341–359.
  • Szejtli, J. (2003) “Cyclodextrins in the textile industry,” Starch/Stärke, 55, pp. 191–196.
  • Szente, L. (1998) “Stable, controlled-release organophosphorous pesticides entrapped in β-cyclodextrin. I. Solid state characteristics,” Journal of Thermal Analysis, 51, pp. 957–963.
  • Szente, L. and Szejtli, J. (2004) “Cyclodextrins as food ingredients,” Trends in Food Science &Amp; Technology, 15(3–4), pp. 137–142. Available at: https://doi.org/10.1016/j.tifs.2003.09.019.
  • Verstichel, S. et al. (2004) “Investigation of the aerobic biodegradability of several types of cyclodextrins in a laboratory-controlled composting test,” Journal of Polymers and the Environment, 12 (3), pp. 47–55.
  • Vico, R.V., De Rossi, R.H. and Buján, E.I. (2009) “Reactivity of the insecticide chlorpyrifos-methyl toward hydroxyl and perhydroxyl ion. Effect of cyclodextrins,” Journal of Physical Organic Chemistry, 22(7), pp. 691–702. Available at: https://doi.org/10.1002/poc.1502.
  • Wu, Y.S., Lee, H.K. and Li, S.F.Y. (2001) “High-performance chiral separation of fourteen triazole fungicides by sulfated β-cyclodextrin-mediated capillary electrophoresis,” Journal of Chromatography A., 912, pp. 171–179.
  • Yang, M. et al. (2015) “Vortex-assisted magnetic β-cyclodextrin/attapulgite-linked ionic liquid dispersive liquid–liquid microextraction coupled with high-performance liquid chromatography for the fast determination of four fungicides in water samples,” Journal of Chromatography A, 1381, pp. 37–47. Available at: https://doi.org/10.1016/j.chroma.2015.01.016.
  • Yañez, C., Araya, M. and Bollo, S. (2010) “Complexation of herbicide bentazon with native and modified β-cyclodextrin,” Journal of Inclusion Phenomena and Macrocyclic Chemistry, 68(1–2), pp. 237–241. Available at: https://doi.org/10.1007/s10847-010-9750-3.
  • Zhao, Y. and Truhlar, D.G. (2007) “The M06 suite of den sity functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals,” Theoretical Chemistry Accounts, 120(1–3), pp. 215–241. Available at: https://doi.org/10.1007/s00214-007-0310-x.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b80434e1-9a62-4a2d-b619-f413e8d3b1ae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.