Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This research focuses on the analysis of laser beam shape propagation properties and the generalized beam shaping of the fundamental Gaussian mode, Hermite–Gaussian modes and Laguerre–Gaussian modes, which were studied analytically and numerically using the angular spectrum technique and the 2D fast Fourier transformation procedures. The fundamental Gaussian mode is applied here as the reference for checking the accuracy of beam profile analysis based on multiple scanning knife-edge method. A set of spatial profile curves is generated, each of which represents the intensity profile of the fundamental Gaussian mode for different directions of propagation. The He-Ne laser and the diode laser are used as the probe lasers. The experimental results show that the He-Ne laser emits a pure fundamental Gaussian mode, whereas the diode laser emits an elliptical beam shape. Some numerical simulation examples of the generated beams are also given to illustrate the propagation properties of the fundamental Gaussian mode, Hermite–Gaussian modes, and Laguerre–Gaussian modes
Czasopismo
Rocznik
Tom
Strony
283--302
Opis fizyczny
Bibliogr. 53 poz., rys.
Twórcy
autor
- Department of Optics and Photonics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
Bibliografia
- [1] DICKEY F.M., Laser Beam Shaping: Theory and Techniques, CRC Press, New York, 2014.
- [2] MASAJADA J., Half-plane diffraction in the case of Gaussian beams containing an optical vortex, Optics Communications 175(4-6), 2000: 289-294. https://doi.org/10.1016/S0030-4018(00)00470-3
- [3] GUTIÉRREZ-VEGA J.C., BANDERS M.A., Helmholtz–Gauss waves, Journal of the Optical Society of America A 22(2), 2005: 289-298. https://doi.org/10.1364/JOSAA.22.000289
- [4] WRIGHT D., GREVE P., FLEISCHER J., AUSTIN L., Laser beam width, divergence and beam propagation factor: an international standardization approach, Optical and Quantum Electronics 24, 1992: S993-S1000. https://doi.org/10.1007/BF01588600
- [5] SIEGMAN A.E., Lasers, Oxford University Press, Mill Valley, CA, 1986.
- [6] SIEGMAN A.E., Hermite–Gaussian functions of complex argument as optical beam eigenfunctions, Journal of the Optical Society of America 63(9), 1973: 1093-1094. https://doi.org/10.1364/JOSA.63.001093
- [7] CARBONE L., BOGAN C., FULDA P., FREISE A., WILLKE B., Generation of high-purity higher-order Laguerre–Gauss beams at high laser power, Physical Review Letters 110, 2013: 251101-251106.https://doi.org/10.1103/PhysRevLett.110.251101
- [8] SCHMIDT O.A., SCHULZE C., FLAMM D., BRÜNING R., KAISER T., SCHRÖTER S., DUPARRÉ M., Real-time determination of laser beam quality by modal decomposition, Optics Express 19(7), 2011: 6741-6748. https://doi.org/10.1364/OE.19.006741
- [9] ALSULTANNY Y.A., Laser beam analysis using image processing, Journal of Computer Science 2(1), 2006: 109-113. https://doi.org/10.3844/jcssp.2006.109.113
- [10] TSIGARIDAS G., FAKIS M., POLYZOS I., PERSEPHONIS P., GIANNETAS V., Z-scan technique through beam radius measurements, Applied Physics B 76, 2003: 83-86. https://doi.org/10.1007/s00340-002-1067-5
- [11] ARNAUD J.A., HUBBARD W.M., MANDEVILLE G.D., DE LA CLAVIERE B., FRANKE E.A., FRANKE J.M., Technique for fast measurement of Gaussian laser beam parameters, Applied Optics 10(12), 1971: 2775-2776. https://doi.org/10.1364/AO.10.002775
- [12] SUZAKI Y., TACHIBANA A., Measurement of the μm sized radius of Gaussian laser beam using the scanning knife edge, Applied Optics 14(12), 1975: 2809-2810. https://doi.org/10.1364/AO.14.002809
- [13] SIEGMAN A.E., SASNETT M.W., JOHNSTON T.F., Choice of clip levels for beam width measurements using knife-edge techniques, IEEE Journal of Quantum Electronics 27(4), 1991: 1098-1104. https://doi.org/10.1109/3.83346
- [14] CHAPPLE P.B., Beam waist and M2 measurement using a finite slit, Optical Engineering 33(7), 1994: 2461-2466. https://doi.org/10.1117/12.169739
- [15] KHOSROFIAN J.M., GARETZ B.A., Measurement of a Gaussian laser beam diameter through the direct inversion of knife-edge data, Applied Optics 22(21), 1983: 3406-3410. https://doi.org/10.1364/AO.22.003406
- [16] BACHMANN L., ZEZELL D.M., MALDONADO E.P., Determination of beam width and quality for pulsed lasers using the knife-edge method, Instrumentation Science & Technology 31(1), 2003: 47-52. https://doi.org/10.1081/CI-120018406
- [17] KIANG Y.C., LANG R.W., Measuring focused Gaussian beam spot sizes: A practical method, Applied Optics 22(), 1983: 1296-1297. https://doi.org/10.1364/AO.22.001296
- [18] HUBER C., ORLOV S., BANZER P., LEUCHS G., Corrections to the knife-edge based reconstruction scheme of tightly focused light beams, Optics Express 21(21), 2013: 25069-25076. https://doi.org/10.1364/OE.21.025069
- [19] MENDOZA-YERO O., ARRONTE M., Determination of Hermite Gaussian modes using of the moving knife-edge, Journal of Physics: Conference Series 59, 2007: 497-500. https://doi.org/10.1088/1742-6596/59/1/107
- [20] SINGH B.K., BAHL M., MEHTA D.S., SENTHILKUMARAN P., Study of internal energy flows in dipole vortex beams by knife-edge test, Optics Communications 293, 2013: 15-21. https://doi.org/10.1016/j.optcom.2012.11.085
- [21] SINGH B.K., MEHTA D.S., SENTHILKUMARAN P., Visualization of internal energy flows in optical fields carrying a pair of fractional vortices, Journal of Modern Optics 60(13), 2013: 1027-1036. https://doi.org/10.1080/09500340.2013.828790
- [22] ROSE A., NIE Y.-X., GUPTA R., Laser beam profile measurement by photothermal deflection technique, Applied Optics 25(11), 1986: 1738-1741. https://doi.org/10.1364/AO.25.001738
- [23] BABA T., ARAI T., ONO A., Laser beam profile measurement by a thermographic technique, Review of Scientific Instruments 57(11), 1986: 2739-2742. https://doi.org/10.1063/1.1139035
- [24] DE ARAUJO M.A.C., SILVA R., DE LIMA E., PEREIRA D.P., DE OLIVEIRA P.C., Measurement of Gaussian laser beam radius using the knife edge technique: improvement of data analysis, Applied Optics 48(2), 2009: 393-396. https://doi.org/10.1364/AO.48.000393
- [25] GONZÁLEZ-CARDEL M., ARGUIJO P., DÍAZ-URIBE R., Gaussian beam radius measurement with a knife-edge: A polynomial approximation to the inverse error function, Applied Optics 52(16), 2013: 3849-3855. https://doi.org/10.1364/AO.52.003849
- [26] QUABIS S., DORN R., EBERLER M., GLÖCKL O., LEUCHS G., The focus of light – theoretical calculation and experimental tomographic reconstruction, Applied Physics B 72, 2001: 109-113. https://doi.org/10.1007/s003400000451
- [27] MARCHENKO P., ORLOV S., HUBER C., BANZER P., QUABIS S., PESCHEL U., LEUCHS G., Interaction of highly focused vector beams with a metal knife-edge, Optics Express 19(8), 2011: 7244-7261.https://doi.org/10.1364/OE.19.007244
- [28] RICO-GARCÍA J.M., SANCHEZ-BREA L.M., ALDA J., Application of tomographic techniques to the spatial response mapping of antenna-coupled detectors in the visible, Applied Optics 47(6), 2008: 768-775. https://doi.org/10.1364/AO.47.000768
- [29] SILVA-LÓPEZ M., RICO-GARCÍA J.M., ALDA J., Measurement limitations in knife-edge tomographic phase retrieval of focused IR laser beams, Optics Express 20(21), 2012: 23875-23886. https:// doi.org/10.1364/OE.20.023875
- [30] DÍAZ-URIBE R., ROSETE-AGUILAR M., ORTEGA-MARTÍNEZ R., Position sensing of a Gaussian beam with a power meter and a knife edge, Revista Mexicana de Física 39(3), 1992: 484-492.
- [31] MALACARA D., Optical Shop Testing, 2nd Ed., Wiley-Inter-Science Publication, 1992.
- [32] TALATINIAN A., Numerical simulation of the physical properties of Gaussian mode using the angular spectrum technique, Optik 127(17), 2016: 6970-6977. https://doi.org/10.1016/j.ijleo.2016.05.009
- [33] TALATINIAN A., The analysis of the laser beam shape of the fundamental Gaussian mode by testing the numerical angular spectrum technique, Optics & Laser Technology 118, 2019: 75-83. https:// doi.org/10.1016/j.optlastec.2019.05.001
- [34] TALATINIAN A., PLUTA M., Propagation of a fundamental laser mode and its numerical simulation by the angular spectrum technique, Optik 127(8), 2016: 3882-387. https://doi.org/10.1016/j.ijleo.2016.01.111
- [35] TALATINIAN A., Far and near fields of Hermite–Gaussian beams passing through an annular aperture and its numerical simulation by the angular spectrum method, Optica Applicata 53(3), 2023: 467-481. https://doi.org/10.37190/oa230310
- [36] ARLT J., Handedness and azimuthal energy flow of optical vortex beams, Journal of Modern Optics 50(10), 2003: 1573-1580. https://doi.org/10.1080/09500340308235231
- [37] SENTHILKUMARAN P., Optical phase singularities in the detection of laser beam collimation, Applied Optics 42(31), 2003: 6314-6320. https://doi.org/10.1364/AO.42.006314
- [38] LOCHAB P., SENTHILKUMARAN P., KHARE K., Near-core structure of a propagating optical vortex, Journal of the Optical Society of America A 33(12), 2016: 2485-2490. https://doi.org/10.1364/ JOSAA.33.002485
- [39] POPIOŁEK-MASAJADA A., MASAJADA J., KURZYNOWSKI P., Propagation of the vortex beam through the simple sample in the optical vortex microscope, Proceedings of the SPIE, Vol. 10142, 20th Slovak-Czech-Polish Optical Conference on Wave and Quantum Aspects of Contemporary Optics, 2016:1014206. https://doi.org/10.1117/12.2262432
- [40] SZATKOWSKI M., BURNECKA E., DYŁA H., MASAJADA J., Optical vortex tracking algorithm based on the Laguerre–Gaussian transform, Optics Express 30(10), 2022: 17451-17464. https://doi.org/10.1364/OE.455502
- [41] GOODMAN J.W., Introduction to Fourier Optics, 3nd Ed., Roberts & Company, 2005.
- [42] SAGHAFI S., SHEPPARD C.J.R., The beam propagation factor for higher order Gaussian beams, Optics Communications 153(4-6), 1998: 207-210. https://doi.org/10.1016/S0030-4018(98)00256-9
- [43] BYRON F.W., FULLER R.W., Mathematics of Classical and Quantum Physics, Vol. 2, Addison-Wesley, Massachusetts 1972.
- [44] ALLEN L., BEIJERSBERGEN M.W., SPREEUW R.J.C., WOERDMAN J.P., Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes, Physical Review A 45, 1992: 8185 -8189. https://doi.org/10.1103/PhysRevA.45.8185
- [45] ALLEN L, BARNETT S.M., PADGETT M.J., Optical Angular Momentum, Institute of Physics Publishing, Bristol, 2003.
- [46] ALLEN L., PADGETT M.J., BABIKER M., The orbital angular momentum of light, Progress in Optics 39, 1999: 291-372. https://doi.org/10.1016/S0079-6638(08)70391-3
- [47] PADGETT M.J., ALLEN L., The Poynting vector in Laguerre–Gaussian laser modes, Optics Communications 121(1-3), 1995: 36-40. https://doi.org/10.1016/0030-4018(95)00455-H
- [48] FENG S., WINFUL H.G., Physical origin of the Gouy phase shift, Optics Letters 26(8), 2001: 485-487. https://doi.org/10.1364/OL.26.000485
- [49] PETERSEN T.C., PAGANIN D.M., WEYLAND M., SIMULA T.P., EASTWOOD S.A., MORGAN M.J., Unifying interpretations of the Gouy phase anomaly for electron waves, Physical Review 89, 2014: 063801. https://doi.org/10.1103/PhysRevA.89.063801
- [50] PADGETT M.J., MIATTO F.M., LAVERY M.P.J., ZEILINGER A., BOYD R.W., Divergence of an orbital-angular-momentum carrying beam upon propagation, New Journal of Physics 17, 2015: 023011. https://doi.org/10.1088/1367-2630/17/2/023011
- [51] ZOLNACZ K., SZATKOWSKI M., MASAJADA J., URBANCZYK W., Broadband chromatic dispersion measurements in higher-order modes selectively excited in optical fibers using a spatial light modulator, Optics Express 29(9), 2021: 13256-13268. https://doi.org/10.1364/OE.422736
- [52] SZATKOWSKI M., POPIOŁEK-MASAJADA A., MASAJADA J., Beam quality measurement through off-axis optical vortex, Proceedings of the SPIE, Vol. 11107, Laser Beam Shaping XIX, 2019: 1110703. https://doi.org/10.1117/12.2529779
- [53] SZATKOWSKI M., POPIOŁEK-MASAJADA A., MASAJADA J., Optical vortex trajectory as a merit function for spatial light modulator correction, Optics and Lasers in Engineering 118, 2019: 1-6. https:// doi.org/10.1016/j.optlaseng.2019.01.014
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b8022904-6ade-42c1-8f49-6eebacdfd684
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.