PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Practical application of cross correlation technique to measure jitter of master-oscillator-power-amplifier laser system

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Linac coherent light source (LCLS) at the SLAC National Accelerator Laboratory (SLAC) is the world’s first hard X-ray free electron laser (XFEL) and is capable of producing high-energy, femtosecond duration X-ray pulses. A common technique to study fast timescale physical phenomena, various “pump/probe” techniques are used. In these techniques there are two lasers, one optical and one X-ray, that work as a pump and as a probe to study dynamic processes in atoms and molecules. In order to resolve phenomena that occur on femtosecond timescales, it is imperative to have very precise timing between the optical lasers and X-rays (on the order of ~20 fs or better). The lasers are synchronized to the same RF source that drives the accelerator and produces the X-ray laser. However, elements in the lasers cause some drift and time jitter, thereby de-synchronizing the system. This paper considers cross-correlation technique as a way to quantify the drift and jitter caused by the regenerative amplifier of the ultrafast optical laser.
Twórcy
  • Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland Department of Chemical Engineering and Technology, University of Technology, 24 Warszawska Str., 31–155 Cracow, Poland
  • Department of Chemical Engineering and Technology, University of Technology, 24 Warszawska Str., 31-155 Cracow, Poland
autor
  • Stanford Linear Accelerator Center, National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
  • Stanford Linear Accelerator Center, National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
autor
  • University of California Santa Cruz, 1156 High Street, Santa Cruz, Ca 95064, USA
Bibliografia
  • 1. S. Boutet, L. Lomb, G.J. Williams, T.R.M. Barends, A. Aquila, R.B. Doak, U. Weierstall, D.P. DePonte, J. Steinbrener, R.L. Shoeman, M. Messerschmidt, A. Barty, T.A. White, S. Kassemeyer, R.A. Kirian, M.M. Seibert, P.A. Montanez, C. Kenney, R. Herbst, P. Hart, J. Pines, G. Haller, S.M. Gruner, H.T. Philipp, M.W. Tate, M. Hromalik, L.J. Koerner, N. van Bakel, J. Morse, W. Ghonsalves, D. Arnlund, M.J. Bogan, C. Caleman, R. Fromme, C.Y. Hampton, M.S. Hunter, L.C. Johansson, G. Katona, C. Kupitz, M. Liang, A.V. Martin, K. Nass, L. Redecke, F. Stellato, N. Timneanu, D. Wang, N.A. Zatsepin, D. Schafer, J. Defever, R. Neutze, P. Fromme, J.C.H. Spence, H.N. Chapman, I. Schlichting, “High-resolution protein structure determination by serial femtosecond crystallography”, Science 337, 362–364 (2012).
  • 2. S. Dusanter, R. Hansen, T. Leonardis, C. Schoemaecker, M. Blocquet, C. Fittschen, B. Hanoune, V. Sinha, P. Stevens, and N. Locoge, “Atmospheric measurements of total OH reactivity: Intercomparison of the pump-probe technique and the comparative reactivity method”, Geophysical Research Abstracts, 15, 5599 (2013).
  • 3. T.R. M. Barends, L. Foucar, S. Botha, R.B. Doak, R.L. Shoeman, K. Nass, J.E. Koglin, G.J. Williams, S. Boutet, M. Messerschmidt, and I. Schlichting, “De novo protein crystal structure determination from X-ray free-electron laser data”, Nature, 505, 244–247 (2014).
  • 4. H. Wang, C. Zhang, and F. Rana, “Ultrafast Carrier Dynamics in Single and Few layer MoS2 studied by Optical Pump Probe Technique”, CLEO: QELS_Fundamental Science, San Jose, 2013.
  • 5. H.N. Chapman, P. Fromme, A. Barty, T.A. White, R.A. Kirian, A. Aquila, M.S. Hunter, J. Schulz, D.P. DePonte, U. Weierstall, R.B. Doak, F.R.N.C. Maia, A.V. Martin, I. Schlichting, L. Lomb, N. Coppola, R.L. Shoeman, S.W. Epp, R. Hartmann, D. Rolles, A. Rudenko, L. Foucar, N. Kimmel, G. Weidenspointner, P. Holl, M. Liang, M. Barthelmess, C. Caleman, S. Boutet, M.J. Bogan, J. Krzywinski, C. Bostedt, S. Bajt, L. Gumprecht, B. Rudek, B. Erk, C. Schmidt, A. Hömke, C. Reich, D. Pietschner, L. Strüder, G. Hauser, H. Gorke, J. Ullrich, S. Herrmann, G. Schaller, F. Schopper, H. Soltau, K.-U. Kühnel, M. Messerschmidt, J.D. Bozek, S.P. Hau-Riege, M. Frank, C.Y. Hampton, R.G. Sierra, D. Starodub, G.J. Williams, J. Hajdu, N. Timneanu, M.M. Seibert, J. Andreasson, A. Rocker, O. Jönsson, M. Svenda, S. Stern, K. Nass, R. Andritschke, C.D. Schröter, F. Krasniqi, M. Bott, K.E. Schmidt, X. Wang, I. Grotjohann, J.M. Holton, T.R.M. Barends, R. Neutze, S. Marchesini, R. Fromme, S. Schorb, D. Rupp, M. Adolph, T. Gorkhover, I. Andersson, H. Hirsemann, G. Potdevin, H. Graafsma, B. Nilsson, J.C.H. Spence, “Femtosecond X-ray protein nanocrystallography”, Nature 470, 73–77 (2011).
  • 6. C. Shu, Z. Mei-Ling, D. Xian-Zi, Z. Zhen-Sheng, and D. Xuan-Ming, “Nondegenerate two-photon absorption in a zinc blende-type ZnS single crystal using the femtosecond pump-probe technique”, JOSA B30, 12, 3117–3122 (2013).
  • 7. E.A.D. Carbone, S. Hübner, J.J.A.M. van der Mullen, G.M. W. Kroesen, and N. Sadeghi, “Determination of electron-impact transfer rate coefficients between argon 1s2 and 1s3 states by laser pump-probe technique”, J. Phys. D: Appl. Phys. 46, 1–9 (2013).
  • 8. A.M. Chekalyuk1, F.E. Hoge, C.W. Wright, and R.N. Swift, “Short-pulse pump-and-probe technique for airborne laser assessment of Photosystem II photochemical characteristics”, Photosynth. Res. 66, 33–44 (2000).
  • 9. W.S Capinski, H.J Maris, T. Ruf, M. Cardona, K. Ploog, D.S. Katzer, “Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique”, Phys. Rev. B59, 8105–8113 (1999).
  • 10. J. Sotor, G. Sobon, and K.M. Abramski, “Er-doped fibre laser mode-locked by mechanically exfoliated graphene saturable absorber”, Opto-Electron. Rev. 20, 362–366 (2012).
  • 11. J. Mlynczak, K. Kopczynski, and Z. Mierczyk, “Optimization of passively repetitively Q-switched three-level lasers”, J. Quantum Electronics 44, 1152–1157 (2008).
  • 12. C. Fourcade-Dutin, B. Debord, M. Dontabactouny, C. Hönninger, E. Mottay, L. Vincetti, F. Gérôme, and F. Benabid, “Milli-Joule femtosecond laser-pulse delivery and compression in hypocycloid core Kagome HC-PCF”, CLEO: Science and Innovations, San Jose, 2013.
  • 13. D. Cabaret, S. Rossano, and N. Trcera, “Comment on “Femtosecond laser-induced modification of potassium-magnesium silicate glasses: An analysis of structural changes by near edge x-ray absorption spectroscopy”, Appl. Phys. Lett. 102, 196101–1 (2012).
  • 14. J. Mlynczak, K. Kopczynski, Z. Mierczyk, M. Malinowska, and P. Osiwiański, “Pulse generation at 1.5 μm wavelength in new EAT14 glasses doped with Er3+ and Yb3+ ions”, Opto-Electron. Rev. 20, 87–90 (2012).
  • 15. P. Emma, R. Akre, J. Arthur, R. Bionta, C. Bostedt, J. Bozek, A. Brachmann, P. Bucksbaum, R. Coffee, F.-J. Decker, Y. Ding, D. Dowell, S. Edstrom, A. Fisher, J. Frisch, S. Gilevich, J. Hastings, G. Hays, Ph. Hering, Z. Huang, R. Iverson, H. Loos, M. Messerschmidt, A. Miahnahri, S. Moeller, H.-D. Nuhn, G. Pile, D. Ratner, J. Rzepiela, D. Schultz, T. Smith, P. Stefan, H. Tompkins, J. Turner, J. Welch, W. White, J. Wu, G. Yocky, J. Galayda, “First lasing and operation of an angstrom-wavelength free-electron laser”, Nat. Photonics 4, 641–647 (2010).
  • 16. L.A. Jiang, S.T. Wong, M.E. Grein, E.P. Ippen, and H.A. Haus, “Measuring timing jitter with optical cross correlations”, J. Quantum Electronics 38, 1047–1052 (2002).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b8011882-a355-4952-92bf-7da5e4fd4275
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.