PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

CO2 emission to the atmosphere from carbonate waters: The study case of the Lublin Upland and Roztocze Regions

Identyfikatory
Warianty tytułu
PL
Emisja CO2 do atmosfery z wód węglanowych na przykładzie Wyżyny Lubelskiej i Roztocza
Języki publikacji
EN
Abstrakty
EN
The concentration of carbon dioxide dissolved in water (CO2(aq)) was measured in consecutive phases of the hydrological cycle. Its potentially possible degassing from groundwaters to the atmosphere was also assessed. The research was conducted in the area of occurrence of carbonate rocks of the Lublin Upland and Roztocze (SE Poland). The results of the measurements of CO2(aq) concentration varied as follows (min-max/mean): precipitation waters < 1-3/2.6 mg · dm−3, soil waters 3-50/14.2 mg · dm−3, groundwaters 10-70/30.3 mg · dm−3, river waters < 1-21/7.6 mg · dm−3. The measure of degassing of carbon dioxide from groundwaters to the atmosphere was a decrease in CO2(aq) concentration in fluvial outflow. Based on the value of groundwater outflow from the Lublin Upland and Roztocze, the annual carbon dioxide emission from waters to the atmosphere was calculated at a level of 50 thousand Mg · year−1. This value constitutes approximately 1% of anthropogenic emission of carbon dioxide originating from environmentally harmful industrial plants in the Lublin province.
PL
W pracy przedstawiono wyniki badań zawartości rozpuszczonego ditlenku węgla w wodzie (CO2(aq)) na poszczególnych etapach obiegu hydrologicznego zlewni rzecznej oraz oceniono jego potencjalne możliwości degazacji z wód podziemnych do atmosfery. Badania prowadzono na przykładzie wybranych obiektów hydrograficznych w obszarze skał węglanowych Wyżyny Lubelskiej i Roztocza, SE Polska. Zawartość CO2(aq) w wodach opadowych kształtowała się na poziomie < 1-3 mg · dm–3, w wodach glebowych od 3-50 mg · dm–3, wodach podziemnych 10-70 mg · dm–3, a w wodach rzecznych od < 1 do 21 mg · dm–3. Zebrany materiał wskazuje, że emisja ditlenku węgla z wód węglanowych Wyżyny Lubelskiej i Roztocza kształtuje się na poziomie 50 tys. Mg · rok–1. Wartość ta stanowi około 1% emisji antropogenicznej ditlenku węgla pochodzącego ze spalania paliw stałych na badanym obszarze.
Rocznik
Strony
499--511
Opis fizyczny
Bibliogr. 37 poz., wykr., rys., tab., map.
Twórcy
autor
  • Faculty of Earth Sciences and Spatial Management, Maria Curie-Skłodowska University, ul. Kraśnicka 2cd, 20-718 Lublin, Poland, phone +48 81 537 68 62, fax +48 81 537 68 62
autor
  • Mass Spectrometry Laboratory, Maria Curie-Skłodowska University, pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland, phone +48 81 537 62 75, fax +48 81 537 61 91
autor
  • Mass Spectrometry Laboratory, Maria Curie-Skłodowska University, pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland, phone +48 81 537 62 75, fax +48 81 537 61 91
autor
  • Faculty of Earth Sciences and Spatial Management, Maria Curie-Skłodowska University, ul. Kraśnicka 2cd, 20-718 Lublin, Poland, phone +48 81 537 68 62, fax +48 81 537 68 62
  • Faculty of Earth Sciences and Spatial Management, Maria Curie-Skłodowska University, ul. Kraśnicka 2cd, 20-718 Lublin, Poland, phone +48 81 537 68 62, fax +48 81 537 68 62
  • Faculty of Chemistry, Gdańsk University of Technology, ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland, phone +48 58 347 21 10, fax +48 58 347 21 10
autor
  • Faculty of Earth Sciences and Spatial Management, Maria Curie-Skłodowska University, ul. Kraśnicka 2cd, 20-718 Lublin, Poland, phone +48 81 537 68 62, fax +48 81 537 68 62
  • Mass Spectrometry Laboratory, Maria Curie-Skłodowska University, pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland, phone +48 81 537 62 75, fax +48 81 537 61 91
Bibliografia
  • [1] IPCC. Carbon and Other Biogeochemical Cycles - Final Draft Underlying Scientific-Technical Assessment. 2013. www.ipcc.ch/pdf/press/ipcc_leaflets_2010/ipcc_ar5_leaflet.pdf.
  • [2] Berner EK, Berner RA. Global Environmental. Water, Air and Geochemical Cycles. Upper Saddle River, New Jersey: Prentice Hall; 1996.
  • [3] Prentice IC, Farquhar GD, Fasham MJR, Goulden ML, Heimann M, Jaramillo VJ, et al. The carbon cycle and atmospheric carbon dioxide. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, et al, editors. Climate Change 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; 2001;185-237.
  • [4] Robinson AB, Robinson ZW, Sonn W. Environmental effects of increased atmospheric carbon dioxide. J Am Phys Surg. 2007;3:79-90. http://www.oism.org/pproject/s33p36.htm.
  • [5] Chilingar GV, Sorokhtin OG, Khilyuk LF, Liu M. do increasing contents of methane and carbon dioxide in the atmosphere cause global warming? Atmosph Climate Sci. 2014;4:819-827. DOI: 10.4236/acs.2014.45072.
  • [6] Dudziak A, Hałas S. Diurnal cycle of carbon isotope ratio in soil CO2 in various ecosystems. Plant Soil. 1996;183:291-299. DOI: 10.1007/BF00011444.
  • [7] Anthoni PM, Knohl A, Rebmann C, Freibauer A, Mund M, Ziegler W, et al. Forest and agricultural land-use-dependent CO2 exchange in Thuringia, Germany. Glob Change Biol. 2004;10(12):2005-2019. DOI: 10.1111/j.1365-2486.2004.00863.x.
  • [8] Janssens IA, Freibauer A, Schlamadinger B, Ceulemans R, Ciais P, Dolman AJ, et al. The carbon budget of terrestrial ecosystems at country-scale - A European case study. Biogeosciences. 2005;2:15-26. DOI: 10.5194/bg-2-15-2005.
  • [9] Kerrick D.M. Present and past nonanthropogenic CO2 degassing from the solid Earth. Rev Geophys. 2001;39(4):565-586. DOI: 10.1029/2001RG000105.
  • [10] Mörner N-A., Etiope G. Carbon degassing from the lithosphere. Global Planet Change. 2002;33:185-203. DOI: 10.1016/S0921-8181(02)00070-X.
  • [11] Werner C, Brantley S. CO2 emissions from the Yellowstone volcanic system. Geochem Geophys Geosyst. 2003;4(7):1-27. DOI: 10.1029/2002GC000473.
  • [12] Jing ZC, Yuan DX. CO2 source-sink in karst processes in karst areas of China. Episodes. 1999;22:1:33-35.
  • [13] Liu Z, Zhao J. Contribution of carbonate rock weathering to the atmospheric CO2 sink. Environ Geology. 1999;39(9):1053-1058. DOI: 10.1007/s002549900072.
  • [14] Kindler R, Siemens J, Kaiser K, Walmsley DC, Bernhofer C, Buchmann N, et al. Dissolved carbon leaching from soil is a crucial component of the net ecosystem carbon balance. Glob Change Biol. 2011;17:1167-1185. DOI: 10.1111/j.1365-2486.2010.02282.x.
  • [15] Butman D, Raymond PA. Significant efflux of carbon dioxide from streams and rivers in the United States. Nat Geosci. 2011;4:839-842. DOI: 10.1038/ngeo1294.
  • [16] Wang ZA, Bienvenu DJ, Mann PJ, Hoering KA, Poulsen JR, Spencer RGM, et al. Inorganic carbon speciation and fluxes in the Congo River. Geophys Res Lett. 2013;40:511-516. DOI: 10.1002/grl.50160.
  • [17] Kessler TJ, Harvey CF. The global flux of carbon dioxide into groundwater. Geophys Res Lett. 2001;28(2):279-282.
  • [18] Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, et al. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems. 2007;10:171-184. DOI: 10.1007/s10021-006-9013-8.
  • [19] Houghton RA. Balancing the global carbon budget. Ann Rev Earth Planet Sci. 2007;35:313-347. DOI: 10.1146/annurev.earth.35.031306.140057.
  • [20] Battin TJ, Luyssaert S, Kaplan LA, Aufdenkampe AK, Richter A, Tranvik LJ. The boundless carbon cycle. Nat Geosci. 2009;2:598-600. DOI: 10.1038/ngeo618.
  • [21] Aufdenkampe AK, Mayorga E, Raymond PA, Melack JM, Doney SC, Alin SR, et al. Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front Ecol Environ. 2011;9:53-60. DOI: 10.1890/100014.
  • [22] Liu Z, Dreybrodt W, Wang H. A new direction in effective accounting for the atmospheric CO2 budget: Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms. Earth-Sci Rev. 2010;99:162-172. DOI: 10.1016/j.earscirev.2010.03.001.
  • [23] Xiaoping Z, Baran S, Cel W, Cao Y. Sustainable approach to mitigation of CO2 emission. Ecol Chem Eng S. 2014;21(4):617-622. DOI: 10.1515/eces-2014-0044.
  • [24] Stumm W, Morgan JJ. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters. New York: John Wiley&Sons; 1996.
  • [25] Appelo CA, Postma D. Geochemistry, groundwater and pollution. Rotterdam, Brookfield: Balkema; 1999.
  • [26] Michalczyk Z, Chmiel S, Głowacki S, Zielińska B. Changes of springs’ yield of Lublin Upland and Roztocze Region in 1998-2008. J Water Land Dev. 2008;12:113-125.
  • [27] Kaszewski BM, Pidek IA, Piotrowska-Weryszko K, Weryszko-Chmielewska A. Annual pollen sums of Alnus in Lublin and Roztocze in the years 2001-2007 against selected meteorological parameters. Acta Agrob. 2008;61(2):57-64. DOI: 10.5586/AA.2008.033.
  • [28] QBG. Quarterly bulletin of groundwaters. Polish Hydrogeol Survey. 2010:9(30),8(29),8(28),8(27),8(26). http://www.psh.gov.pl.
  • [29] Langmuir D. Aqueous Environmental Geochemistry. Upper Saddle River, New Jersey: Prentice Hall, Inc, Simon & Schuster/A Viacom Company; 1997.
  • [30] Szaran J, Niezgoda H, Trembaczowski A. Respiration and assimilation processes reflected in the carbon isotopic composition of atmospheric carbon dioxide. Nukleonika. 2002;47(Supplement 1):59-61.http://www.ichtj.waw.pl/ichtj/nukleon/back/full/vol47_2002/v47s1p059f.pdf.
  • [31] Zimnoch M, Florkowski T, Necki JM, Neubert REM. Diurnal variability of d13C and d18O of atmospheric CO2 in the urban atmosphere of Krakow, Poland. Isot Environ Health Stud. 2004;40:129-143. DOI: 10.1080/10256010410001670989.
  • [32] Szaran J, Dudziak A, Trembaczowski A, Niezgoda H, Hałas S. Diurnal variations and vertical distribution of d13C, and concentration of atmospheric and soil CO2 in a meadow site, SE Poland. Geol Quart. 2005;49(2):135-144. http://www.pgi.gov.pl/images/stories/przeglad/pdf/gq_49_2_p135.pdf.
  • [33] Pawlicka D. Content of dissolved oxygen and carbon dioxide in rainwaters and groundwaters within the forest reserve of the Kampinos National Park and the urban area of Warsaw. Poland. Geol Quart. 2003:47(2):187-194. http://www.pgi.gov.pl/images/stories/przeglad/pdf/gq_47_2_p187.pdf.
  • [34] Chmiel S, Hałas S, Janusz J, Głowacki S, Trembaczowski A. Studies on quantitative and qualitative changes in dissolved inorganic carbon content in a river drainage area. Przem Chem. 2015;94(6):994-998. DOI: 10.15199/62.2015.6.27.
  • [35] Polsenaere P, Abril G. Modelling CO2 degassing from small acidic rivers using water pCO2, DIC and δ13C-DIC data. Geochim Cosmochim Acta. 2012;91:220-239. DOI: 10.1016/j.gca.2012.05.030.
  • [36] Li S, Lu XX, He M, Zhou Y, Li L, Ziegler AD. Daily CO2 partial pressure and CO2 outgassing in the upper Yangtze River basin: a case study of the Longchaun River, China. J Hydrol. 2012;466-467, 141-150.
  • [37] Khadka MB, Jonathan B, Martin JB, Jin J. Transport of dissolved carbon and CO2 degassing from a river system in a mixed silicate and carbonate catchment. J Hydrol. 2014;513:391-402. DOI: 10.1016/j.jhydrol.2014.03.070.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b7fe02c3-4fe1-4e64-901c-98ad5837e714
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.