PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

The Effect of Sonication Parameters on the Thickness of the Produced MoS2 Nano-Flakes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Liquid Phase Exfoliation (LPE) is a common route to produce two-dimensional MoS2 nanosheets. In this research, MoS2 powder is exfoliated by an ultrasonic probe (sonicator) in a water-ethanol solution. It is reported that MoS2 as a prototype 2D Transition Metal Dichalcogenide, has a band gap that increases with a decreasing number of layers. There are some factors that affect the average band gap energy value and the thickness of the exfoliated flakes. We varied different parameters of the ultrasonic probe like power, pulse percentage and time duration of sonication to investigate the effects on the number of MoS2 layers. Our findings from the UV-Visible spectra, SEM, FESEM and TEM images indicate that the minimum thickness for these samples was acquired at 50% of the input power of the sonicator we used (∼65 W) and the optimum pulse percentage is 50%. The current study also found that the average amount of band gap increased with an increase in sonication time, and then remained unchanged after 60 minutes.
Rocznik
Strony
31--40
Opis fizyczny
Bibliogr. 51 poz., fot., rys., tab., wykr.
Twórcy
  • Faculty of Physics, K. N. Toosi University of Technology, Tehran 15418-49611, Iran
  • Faculty of Physics, K. N. Toosi University of Technology, Tehran 15418-49611, Iran
Bibliografia
  • 1. Babu Arumugam A., Rajamohan V., Bandaru N., Sudhagar P. E., Kumbhar S. G. (2019), Vibration analysis of a carbon nanotube reinforced uniform and tapered composite beams, Archives of Acoustics, 44 (2): 309-320, doi: 10.24425/aoa.2019.128494.
  • 2. Backes C. et al. (2014), Edge and confinement effects allow in situ measurement of size and thickness of liquid-exfoliated nanosheets, Nature Communications, 5: 4576, doi: 10.1038/ncomms5576.
  • 3. Backes C. et al. (2017), Guidelines for exfoliation, characterization and processing of layered materials produced by liquid exfoliation, Chemistry of Materials, 29 (1): 243-255, doi: 10.1021/acs.chemmater.6b03335.
  • 4. Backes C. et al. (2020), Production and processing of graphene and related materials, 2D Materials, 7 (2): 022001, doi: 10.1088/2053-1583/ab1e0a.
  • 5. Bang J. H., Suslick K. S. (2010), Applications of ultrasound to the synthesis of nanostructured materials, Advanced Materials, 22 (10): 1039-1059. doi: 10.1002/adma.200904093
  • 6. Bari R. et al. (2015), Liquid phase exfoliation and crumpling of inorganic nanosheets, Physical Chemistry Chemical Physics, 17 (14): 9383-9393, doi: 10.1039/C5CP00294J.
  • 7. Brent J. R., Savjani N., O’Brien P. (2017), Synthetic approaches to two-dimensional transition metal dichalcogenide nanosheets, Progress in Materials Science, 89: 411-478, doi: 10.1016/j.pmatsci.2017.06.002.
  • 8. Brotchie A., Grieser F., Ashokkumar M. (2009), Effect of power and frequency on bubble-size distributions in acoustic cavitation, Physical Review Letters, 102 (8): 084302, doi: 10.1103/physrevlett.102.084302.
  • 9. Butler S. Z. et al. (2013), Progress, challenges, and opportunities in two-dimensional materials beyond graphene, ACS Nano, 7 (4): 2898-2926, doi: 10.1021/nn400280c.
  • 10. Capello C., Fischer U., Hungerbühler K. (2007), What is a green solvent? A comprehensive framework for the environmental assessment of solvents, Green Chemistry, 9 (9): 927-934, doi: 10.1039/B617536H.
  • 11. Choi W., Choudhary N., Han G. H., Park J., Akinwande D., Hee-Lee Y. (2017), Recent development of two-dimensional transition metal dichalcogenides and their applications, Materials Today, 20 (3): 116-130, doi: 10.1016/j.mattod.2016.10.002.
  • 12. Coleman J. N. et al. (2011), Two-dimensional nanosheets produced by liquid exfoliation of layered materials, Science, 331 (6017): 568-571, doi: 10.1126/science.1194975.
  • 13. Connors K. A., Wright J. (1989), Dependence of surface tension on composition of binary aqueous-organic solutions, Analytical Chemistry, 61 (3): 194-198, doi: 10.1021/ac00178a001.
  • 14. Ebrahiminia A., Mokhtari-Dizaji M., Toliyat T. (2013), Correlation between iodide dosimetry and terephthalic acid dosimetry to evaluate the reactive radical production due to the acoustic cavitation activity, Ultrasonics Sonochemistry, 20: 366-372, doi: 10.1016/j.ultsonch.2012.05.016.
  • 15. Frisenda R. et al. (2016), Micro-reflectance and transmittance spectroscopy: A versatile and powerful tool to characterize 2D materials, Journal of Physics D: Applied Physics, 50 (7): 074002, doi: 10.1088/1361-6463/aa5256.
  • 16. Ghasemi F., Mohajerzadeh S. (2016), Sequential solvent exchange method for controlled exfoliation of MoS2 suitable for phototransistor fabrication, ACS Applied Materials & Interfacesaces, 8 (45): 31179-31191, doi: 10.1021/acsami.6b07211.
  • 17. Hajnorouzi A., Afzalzadeh R., Ghanati F. (2014), Studies on the regularity of wave intensity in ultrasonic bath and spherical reactor, Journal of Acoustical Engineering Society of Iran, 2 (1): 32-39.
  • 18. Han J. T. et al. (2014), Extremely efficient liquid exfoliation and dispersion of layered materials by unusual acoustic cavitation, Scientific Reports, 4 (1): 5133, doi: 10.1038/srep05133.
  • 19. Han S. A., Bhatia R., Kim S-W. (2015), Synthesis, properties and potential applications of two-dimensional transition metal dichalcogenides, Nano Convergence, 2 (1): 17, doi: 10.1186/s40580-015-0048-4.
  • 20. Huo C., Yan Z., Song X., Zeng H. (2015), 2D materials via liquid exfoliation: a review on fabrication and applications, Science Bulletin, 60 (23): 1994-2008, doi: 10.1007/s11434-015-0936-3.
  • 21. Jawaid A. et al. (2016), Mechanism for liquid-phase exfoliation of MoS2, Chemistry of Materials, 28 (1): 337-348, doi: 10.1021/acs.chemmater.5b04224.
  • 22. Kajbafvala M., Farbod M. (2018), Effective size selection of MoS2 nanosheets by a novel liquid cascade centrifugation: Influence of the flakes dimensions on electrochemical and photoelectrochemical applications, Journal of Colloid and Interface Science, 527: 159-171, doi: 10.1016/j.jcis.2018.05.026.
  • 23. Kiełczyński P., Ptasznik S., Szalewski M., Balcerzak A., Wieja K., Rostocki A. J. (2019), Application of ultrasonic methods for evaluation of high-pressure physicochemical parameters of liquids, Archives of Acoustics, 44 (2): 329-337, doi: 10.24425/aoa.2019.128496.
  • 24. Kudryashova O. B., Vorozhtsov A., Danilov P. (2019), Deagglomeration and coagulation of particles in liquid metal under ultrasonic treatment, Archives of Acoustics, 44 (3), 543-549, doi: 10.24425/aoa.2019.129269.
  • 25. Liu Y. D. et al. (2013), Preparation, characterization and photoelectrochemical property of ultrathin MoS2 nanosheets via hydrothermal intercalation and exfoliation route, Journal of Alloys and Compounds, 571: 37-42, doi: 10.1016/j.jallcom.2013.03.031.
  • 26. Mak K. F., Lee C., Hone J., Shan J., Heinz T. F. (2010), Atomically thin MoS2: A new direct-gap semiconductor, Physical Review Letters, 105 (13): 136805, doi: 10.1103/physrevlett.105.136805.
  • 27. Marcus Y. (2018), Extraction by subcritical and supercritical water, methanol, ethanol and their mixtures, Separations, 5 (1): 4, doi: 10.3390/separations5010004.
  • 28. Mas-Ballesté R., Gómez-Navarro C., Gómez-Herrero J., Zamora F. (2011), 2D materials: to graphene and beyond, Nanoscale, 3 (1): 20-30, doi: 10.1039/C0NR00323A.
  • 29. Merouani S., Hamdaoui O., Rezgui Y., Guemini M. (2013), Effects of ultrasound frequency and acoustic amplitude on the size of sonochemically active bubbles – theoretical study, Ultrasonics Sonochemistry, 20 (3): 815-819, doi: 10.1016/j.ultsonch.2012.10.015.
  • 30. Miró P., Audiffred M., Heine T. (2014), An atlas of two-dimensional materials, Chemical Society Reviews, 43 (18): 6537-6554, doi: 10.1039/C4CS00102H.
  • 31. Nguyen E. P. et al. (2015), Investigation of two-solvent grinding-assisted liquid phase exfoliation of layered MoS2, Chemistry of Materials, 27 (1): 53-59, doi: 10.1021/cm502915f.
  • 32. Nguyen T. P., Sohn W., Oh J. H., Jang H. W., Kim S. Y. (2016), Size-dependent properties of two-dimensional MoS2 and WS2, The Journal of Physical Chemistry C, 120 (8): 10078-10085, doi: 10.1021/acs.jpcc.6b01838.
  • 33. Nicolosi V., Chhowalla M., Kanatzidis M. G., Strano M. S., Coleman J. N. (2013), Liquid exfoliation of layered materials, Science, 340 (6139): 1226419-(1-18), doi: 10.1126/science.1226419.
  • 34. Niu Y. et al. (2018), Thickness-dependent differential reflectance spectra of monolayer and few-layer MoS2, MoSe2, WS2 and WSe2, Nanomaterials, 8 (9): 725, doi: 10.3390/nano8090725.
  • 35. Peng J., Weng J. (2015), One-pot solution-phase preparation of a MoS2/graphene oxide hybrid, Carbon, 94: 568-576. doi: 10.1016/j.carbon.2015.07.035.
  • 36. Pokhrel N., Vabbina P. K., Pala N. (2016), Sonochemistry: Science and Engineering, Ultrasonics Sonochemistry, 29: 104-128, doi: 10.1016/j.ultsonch.2015.07.023.
  • 37. Qiao W. et al. (2014), Effects of ultrasonic cavitation intensity on the efficient liquid-exfoliation of MoS2 nanosheets, RSC Advances, 4 (92): 50981-50987, doi: 10.1039/C4RA09001B.
  • 38. Samadi M., Sarikhani N., Zirak M., Zhang H., Zhang H-L., Moshfegh A. Z. (2018), Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future perspectives, Nanoscale Horizons, 3 (2): 90-204, doi: 10.1039/C7NH00137A.
  • 39. Shen J. et al. (2015), Liquid phase exfoliation of two-dimensional materials by directly probing and matching surface tension components, Nano Letters, 15 (8): 5449-5454, doi: 10.1021/acs.nanolett.5b01842.
  • 40. Song X., Hub J., Zeng H. (2013), Two-dimensional semiconductors: recent progress and future perspectives, Journal of Materials Chemistry C, 1 (17): 2952-2969, doi: 10.1039/C3TC00710C.
  • 41. Tamura R., Miyata M. [Eds] (2015), Advances in Organic Crystal Chemistry: Comprehensive Reviews, Springer, doi: 10.1007/978-4-431-55555-1.
  • 42. Tonndorf P. et al. (2013), Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2, Optics Express, 21 (4): 4908-4916, doi: 10.1364/OE.21.004908.
  • 43. Vella D. et al. (2016), Femtosecond spectroscopy on MoS2 flakes from liquid exfoliation: surfactant independent exciton dynamics, Journal of Nanophotonics, 10 (1): 012508-1-012508-8. doi: 10.1117/1.JNP.10.012508.
  • 44. Voshell A., Terrones M., Rana M. (2018), Review of optical properties of two-dimensional transition metal dichalcogenides, Proceedings of SPIE 10754, Wide Band gap Power and Energy Devices and Applications III, 107540L, doi: 10.1117/12.2323132.
  • 45. Wang F. et al. (2015), Synthesis, properties and applications of 2D non-graphene materials, Nanotechnology, 26 (29): 292001, doi: 10.1088/0957-4484/26/29/292001.
  • 46. Wang Q. H., Kalantar-Zadeh K., Kis A., Coleman J. N., Strano M. S. (2012), Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nature Nanotechnology, 7 (11): 699-712, doi: 10.1038/nnano.2012.193.
  • 47. Wang Z. M. (2014), MoS2-Materials, Physics, and Devices. Lecture Notes in Nanoscale Science and Technology, Vol. 21, Springer International Publishing, Switzerland, doi: 10.1007/978-3-319-02850-7.
  • 48. Xu H., Zeiger B. W., Suslick K. S. (2013), Sonochemical synthesis of nanomaterials, Chemical Society Reviews, 42 (7): 2555-2567, doi: 10.1039/C2CS35282F.
  • 49. Yang L. et al. (2018), Properties, preparation and applications of low dimensional transition metal dichalcogenides, Nanomaterials, 8 (7): 463, doi: 10.3390/nano8070463.
  • 50. Zhang G., Liu H., Qu J., Li J. (2016), Two-dimensional layered MoS2: rational design, properties and electrochemical applications, Energy & Environmental Science, 9: 1190-1209, doi: 10.1039/C5EE03761A.
  • 51. Zhu J. et al. (2016), Thickness-dependent bandgap tunable molybdenum disulfide films for optoelectronics, RSC Advances, 6: 110604-110609, doi: 10.1039/C6RA22496B.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b7f5728b-2c8f-4d06-bac8-18bce0f12713
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.