PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

New gas-liquid two-phase flow pattern maps based on the energy ratio of pressure fluctuation through a Venturi tube

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To find effective and practical methods to distinguish gas-liquid two-phase flow patterns, new flow pattern maps are established using the differential pressure through a classical Venturi tube. The differential pressure signal was first decomposed adaptively into a series of intrinsic mode functions (IMFs) by the ensemble empirical mode decomposition. Hilbert marginal spectra of the IMFs showed that the flow patterns are related to the amplitude of the pressure fluctuation. The cross-correlation method was employed to sift the characteristic IMF, and then the energy ratio of the characteristic IMF to the raw signal was proposed to construct flow pattern maps with the volumetric void fraction and with the two-phase Reynolds number, respectively. The identification rates of these two maps are verified to be 91.18% and 92.65%. This approach provides a cost-effective solution to the difficult problem of identifying gas-liquid flow patterns in the industrial field.
Rocznik
Strony
241--252
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr., wzory
Twórcy
autor
  • Central South University, School of Energy Science and Engineering, Changsha 410083, China
autor
  • Central South University, School of Energy Science and Engineering, Changsha 410083, China
autor
  • Central South University, School of Energy Science and Engineering, Changsha 410083, China
Bibliografia
  • [1] Roshani, G.H., Nazemi, E., Shama, F., Imani, M.A., Mohammadi, S. (2018). Designing a simple radiometric system to predict void fraction percentage independent of flow pattern using radial basis function. Metrol. Meas. Syst., 25(2), 347-358.
  • [2] Witkowski, D., Kubicki, W., Dziuban, J.A., Jašíková, D., Karczemska, A. (2018). Micro-particle image velocimetry for imaging flows in passive microfluidic mixers. Metrol. Meas. Syst., 25(3), 441-450.
  • [3] Huang, S., Yin, J., Sun, Z., Li, S., Zhou, T. (2017). Characterization of gas-liquid two-phase flow by correlation dimension of vortex-induced pressure fluctuation. IEEE Access, 5, 10307-10314.
  • [4] Kumar, A., Bhowmik, S., Ray, S., Das, G. (2017). Flow pattern transition in gas–liquid down flow through narrow vertical tubes. AICHE J., 63(2), 792-800.
  • [5] Sun, Z., Shao, S., Gong, H. (2013). Gas-liquid flow pattern recognition based on wavelet packet energy entropy of vortex-induced pressure fluctuation. Meas. Sci. Rev., 13(2), 83-88.
  • [6] Sun, Z., Zhang, H. (2008). Neural networks approach for prediction of gas-liquid two-phase flow pattern based on frequency domain analysis of vortex flowmeter signals. Meas. Sci. Technol., 19(1), 015401.
  • [7] Li, S., Sun, Z. (2018). Melting of phase change material from an isothermal vertical wall in a semi-enclosure. Int. J. Heat Mass Transf., 127, 1041-1052.
  • [8] Zhu, H., Li, Z., Yang, X., Zhu, G., Tu, J., Jiang, S. (2017). Flow regime identification for upward two-phase flow in helically coiled tubes. Chem. Eng. J., 308, 606-618.
  • [9] Jagannathan, N., Chidambaram, B., Seshadri, A., Muniyandi, V. (2015). Characterization of gas–liquid two-phase flows using laser patterns. Can. J. Chem. Eng., 93(9), 1678-1685.
  • [10] Yang, Z., Chen, G., Zhuang, X., Song, Q., Deng, Z., Shen, J., Gong, M. (2018). A new flow pattern map for flow boiling of R1234ze(E) in a horizontal tube. Int. J. Multiph. Flow, 98, 24-35.
  • [11] Wua, B., Firouzi, M., Mitchell, T., Rufford, TE., Leonardi, C., Towler, B. (2017). A critical review of flow maps for gas-liquid flows in vertical pipes and annuli. Chem. Eng. J., 326, 350-377.
  • [12] Zhou, Y., Hou, Y., Li, H., Sun, B., Yang, D. (2015). Flow pattern map and multi-scale entropy analysis in 3×3 rod bundle channel. Ann. Nucl. Energy, 80, 144-150.
  • [13] Elperin, T., Fominykh, A., Klochko, M. (2002). Performance of a Venturi meter in gas-liquid flow in the presence of dissolved gases. Flow Meas. Instrum., 13(1-2), 13-16.
  • [14] Wrasse, A.D.N., Bertoldi, D., Morales, R.E.M., Da Silva, M.J. (2017). Two-phase flow rate measurement using a capacitive sensor and a Venturi meter. The 16th IEEE Sensors Conference, Glasgow, 822-824.
  • [15] Xu, Y., Yuan, C., Long, Z., Zhang, Q., Li, Z., Zhang, T. (2013). Research the wet gas flow measurement based on dual-throttle device. Flow Meas. Instrum., 34, 68-75.
  • [16] Fang, L., Zhang, T. (2008). Performance of a horizontally mounted Venturi in low-pressure wet gas flow. Chin. J. Chem. Eng., 16(2), 320-324.
  • [17] Li, H., Li, L., Zhao, D. (2018). An improved EMD method with modified envelope algorithm based on C-2 piecewise rational cubic spline interpolation for EMI signal decomposition. Appl. Math. Comput., 335, 112-123.
  • [18] Zhang, X., Liang, Y., Zhou, J., Zang, Y. (2015). A novel bearing fault diagnosis model integrated permutation entropy, ensemble empirical mode decomposition and optimized SVM. Measurement, 69, 164-179.
  • [19] Chen, B., Yin, P., Gao, Y., Peng, F. (2018). Use of the correlated EEMD and time-spectral kurtosis for bearing defect detection under large speed variation. Mech. Mach. Theory, 129, 162-174.
  • [20] Wang, W., Chau, K., Xu, D., Chen, X. (2015). Improving forecasting accuracy of annual runoff time series using ARIMA based on EEMD decomposition. Water Resour. Manag., 29(8), 2655-2675.
  • [21] Wang, Y., Yeh, C., Young, H.W.V., Hu, K., Lo, M.T. (2014). On the computational complexity of the empirical mode decomposition algorithm. Physica A, 400, 159-167.
  • [22] Wang, Y., Markert, R., Xiang, J., Zheng, W. (2015). Research on variational mode decomposition and its application in detecting rub-impact fault of the rotor system. Mech. Syst. Signal Proc., 60, 243-251.
  • [23] Huang, S., Sun, Z., Zhou, T., Zhou, J. (2018). Application of time-frequency entropy from wake oscillation to gas-liquid flow pattern identification. J. Cent. South Univ., 25(7), 1690-1700.
  • [24] Sun, Z., Gong, H. (2012). Energy of intrinsic mode function for gas-liquid flow pattern identification. Metrol. Meas. Syst., 19(4), 759-766.
  • [25] Adam, K., Robert, H., Anna, S. (2011). Investigation of the statistical method of time delay estimation based on conditional averaging of delayed signal. Metrol. Meas. Syst., 18(2), 335-342.
  • [26] Sun, Z. (2010). Mass flow measurement of gas-liquid bubble flow with the combined use of a Venturi tube and a vortex flowmeter. Meas. Sci. Technol., 21(5), 055403.
  • [27] Sun, Z., Chen, Y., Gong, H. (2012). Classification of gas-liquid flow patterns by the norm entropy of wavelet decomposed pressure fluctuations across a bluff body. Meas. Sci. Technol., 23(12), 125301.
Uwagi
1. We are grateful for the financial support from the National Natural Science Foundation of China (51576213), the Hunan Provincial Natural Science Foundation of China (2017JJ1031), the Changsha Scientific Program (KQ1706066), the Fundamental Research Funds for the Central Universities of Central South University (2018zzts024) and the Open-End Fund for the Valuable and Precision Instruments of Central South University (CSUZC201822).
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b7eb8574-1423-4ec0-a596-a55478aa1a77
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.