PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On how defining and measuring a channel bed elevation impacts key quantities in sediment overloading with supercritical flow

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The manuscript presents the results of an aggradation experiment performed in a laboratory channel with supercritical flow. The channel was fed with a stationary sediment load exceeding the transport capacity of the flow in the initial condition, thus inducing sediment aggradation and an increase of the bed slope. The experiment is part of a laboratory campaign mimicking sediment overloading in mountain rivers, a process that can determine increased hydraulic risk levels at key spots. A crucial issue in measuring sediment aggradation is the definition and determination of the bed elevation, this issue being quite relevant in experiments with a relatively large transport capacity, where a thick bed-load layer exists and hinders the possibility to determine with confidence a reference bed elevation. The determination of the bed elevation, in turn, impacts the quantification of a number of properties, including the initial sediment transport capacity of the flow, temporal scales of the aggradation process, water depth and Froude number. The manuscript presents a sensitivity analysis of the results to two extreme definitions for the bed elevation: the first one locates the bed at the upper edge of the bed-load layer, while the second one at the lower edge of the bed-load layer where the particles do not move. The presentation of the two alternatives is focused on the experimental methods they use, consistently with the intent of the special issue. Furthermore, it is demonstrated that the definition of the bed elevation also has a major impact on numerical models of the process. The experimental results have been reproduced numerically, demonstrating that the calibration parameters returning a best fit are also impacted significantly by how the bed is defined. The preferred definition for analyzing an experimental campaign is locating the bed below the bed-load layer.
Czasopismo
Rocznik
Strony
2511--2528
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
autor
  • Department of Civil and Environmental Engineering, Politecnico Di Milano, Milan, Italy
  • Department of Civil and Environmental Engineering, Politecnico Di Milano, Milan, Italy
  • Department of Civil and Environmental Engineering, Politecnico Di Milano, Milan, Italy
  • Department of Civil and Environmental Engineering, Politecnico Di Milano, Milan, Italy
Bibliografia
  • 1. Alves E, Cardoso AH (1999) Experimental study on aggradation. Int J Sedim Res 14(1):1–15
  • 2. Bareš V, Zrostlík Š, Picek T, Krupička J, Matoušek V (2016) On local velocity measurement in gravity-driven flows with intense bedload of coarse lightweight particles. Flow Meas Instrum 51:68–78
  • 3. Berzi D, Jenkins JT, Richard P (2019) Erodible, granular beds are fragile. Soft Matter 15(36):7173–7178
  • 4. Capart H, Fraccarollo L (2011) Transport layer structure in intense bed‐load. Geophysical Research Letters 38(20)
  • 5. Chanson H (2004) Hydraulics of open channel flow. Elsevier
  • 6. Church M, Haschenburger JK (2017) What is the “active layer”? Water Resour Res 53(1):5–10
  • 7. Dey S, Das R, Gaudio R, Bose SK (2012) Turbulence in mobile-bed streams. Acta Geophys 60(6):1547–1588. https://doi.org/10.2478/s11600-012-0055-3
  • 8. Ferreira RML, Franca MJ, Leal JGAB, Cardoso AH (2012) Flow over rough mobile beds: Friction factor and vertical distribution of the longitudinal mean velocity. Water Resour Res. https://doi.org/10.1029/2011WR011126
  • 9. Jumain M, Ismail Z, Ibrahim Z, Zaini NA (2013) Sediment transport rate and bed formationin straight compound channels. Glob J Environ Res 7(3):40–44
  • 10. Kaczmarek LM, Biegowski J, Sobczak Ł (2019) Modeling of sediment transport in steady flow over mobile granular bed. J Hydraul Eng 145(4):4019009
  • 11. Kinzel P, Nelson J, McDonald R, Logan B (2010) Topographic evolution of sandbars: flume experiment and computational modeling.In: Proceedings of the 4th federal interagency hydrologic modeling conference and of the 9th federal interagency sedimentation conference, Las Vegas
  • 12. Lafaye de Micheaux H, Dudill A, Frey P, Ducottet C (2015) Image processing to study the evolution of channel slope and water depth in bimodal sediment mixtures
  • 13. Matoušek V, Bareš V, Krupička J, Picek T, Zrostlík Š (2015) Experimental investigation of internal structure of open-channel flow with intense transport of sediment. J Hydrol Hydromech 63(4):318–326
  • 14. Matoušek V, Krupička J, Picek T, Zrostlík Š (2019) Conditions at interfaces of layered flow with intense bed load transport. EPJ Web Conf 213:2056
  • 15. Radice A, Zanchi B (2018) Multicamera, multimethod measurements for hydromorphologic laboratory experiments. Geosci 8(5):172
  • 16. Smart GM (1999) Turbulent velocity profiles and boundary shear in gravel bed rivers. J Hydraul Eng 125(2):106–116
  • 17. Soni JP (1981) Laboratory study of aggradation in alluvial channels. J Hydrol 49(1–2):87–106
  • 18. Unigarro Villota S (2017) Laboratory study of channel aggradation due to overloading
  • 19. Venuleo S, Pokrajac D, Tokyay T, Constantinescu G, Schleiss AJ, Franca MJ (2021) Parameterization and results of SWE for gravity currents are sensitive to the definition of depth. J Hydraul Eng 147(5):4021016
  • 20. Vesipa R, Camporeale C, Ridolfi L (2018) Hydraulics of braided river dynamics. Insights from flume experiments. E3S Web of Conferences, 40, 2020
  • 21. Viriyakijja K, Chinnarasri C (2015) Wave flume measurement using image analysis. Aquat Procedia 4:522–531
  • 22. Wilcock PR (1996) Estimating local bed shear stress from velocity observations. Water Resour Res 32(11):3361–3366
  • 23. Wren DG, Kuhnle RA, Langendoen EJ (2020) Sediment transport and bed-form characteristics for a range of step-down flows. J Hydraul Eng 146(2):4019060
  • 24. Wren D, Kuhnle R, McAlpin T, Abraham D, Jones K (2021) Detailed bed topography and sediment load measurements for two stepdown flows in a laboratory flume. International Journal of Sediment Research
  • 25. Yen C, Chang S, Lee H-Y (1992) Aggradation-degradation process in alluvial channels. J Hydraul Eng 118(12):1651–1669
  • 26. Zanchi B, Radice A (2021) Celerity and height of aggradation fronts in gravel-bed laboratory channel. J Hydraul Eng 147(10):4021034
  • 27. Zanchi B, Zucchi M, Radice A (2019) On the relationship between experimental and numerical modelling of gravel-bed channel aggradation. Hydrol 6(1):9
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b7e848db-3060-457b-9756-ecfbc73c57bd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.