PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Porosity prediction using Fuzzy SVR and FCM SVR from well logs of an oil field in south of Iran

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Identification of petrophysical parameters including porosity plays an important role to evaluate hydrocarbon reservoirs. A precise prediction of porosity in oil and gas reservoirs may prevent lots of costs before drilling operations. Porosity obtained from core analysis in laboratory is the most reliable one, while they are very expensive and not always accessible. Inappropriate or missing data in under-survey locations are a key challenge for reservoir engineers. In this paper, support vector regression (SVR) is used to estimate porosity in one of the oil fields in south of Iran. SVR creates models due to structural risk minimization methods which help us to produce models with better generalization and less risk of overfitting. Definitely, measured data are always contaminated with noise. One of the common methods to reduce noise and outliers in data is to process them before using them to train the algorithm; during processing, outliers and some noisy data can be suppressed from data, while it is not always easy to distinguish real data from noise. In this paper, we modified SVR to Fuzzy SVR and Fuzzy C Means (FCM) SVR, which are used to decrease effect of noise on model, and then by adding artificial noise including random noise and outliers to data we investigated how these two methods respond to presence of noise. The results show the presence of noise and outliers in data can alter the center locations and distribution of data points in clusters in FCM SVR. Similarly, it can change the variance of Gaussian membership function we used for Fuzzy SVR, but overall, the results show Fuzzy SVR model is notably more robust against noise compared to FCM SVR. Correlation coefficient (CC) calculated between model and core data decreased from 78 to 67% after noise added to data in FCM SVR model, however, calculated CC for Fuzzy SVR remained almost steady altering from 87 to 86%. Subsequently, calculated root mean square error (RMSE) between models and core data increased from 0.0376 to 0.03827 for Fuzzy SVR, while RMSE jumped from 0.0448 to 0.0517 for FCM SVR.
Czasopismo
Rocznik
Strony
769--782
Opis fizyczny
Bibliogr. 33 poz.
Twórcy
  • Department of Earth Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
  • Institute of Geophysics, University of Tehran, Tehran, Iran
  • Institute of Geophysics, University of Tehran, Tehran, Iran
autor
  • Department of Earth Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
Bibliografia
  • 1. Al-Anazi AF, Gates ID (2011) Support vector regression to predict porosity and permeability: effect of sample size. Comput Geosci 39:64–76
  • 2. Amira Q, Zhang J, Liu J (2021) fuzzy c-means clustering with conditional probability based k-l information regularization. J Statist Comput Simul 91(13):2699
  • 3. Bagheri M, Rezaei H (2019) Reservoir rock permeability prediction using SVR based on radial basis function kernel. Carbonates Evaporites 34:699–707
  • 4. Basak, D, Pal, S, and Patranabis, DC, (2007) Support vector regression, neural information processing, letters and reviews. 10(10): 203–224
  • 5. Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. ISBN 0-306-40671-3
  • 6. Bishop CM, (2006) Pattern Recognition and Machine Learning, Springer, New York 3(3): 325–344
  • 7. Cherkassky V, Mulier F (2009) Learning from Data. Concepts, Theory, and Methods. In: John Wiley & Sons Inc, 2nd ed. Hoboken, New Jersey p. 538
  • 8. Dunn JC (1973) A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J Cybern 3(3):32–57
  • 9. Gholami R, Shahraki AR (2012) Prediction of hydrocarbon reservoirs permeability using support vector machine. Math Probl Eng 1024–123X
  • 10. Ghosh S, Dubey S, (2013) Comparative analysis of k-means and fuzzy c-means algorithms. Int J Adv Comput Sci Appl 4(4)
  • 11. Gunn SR (1998) Support vector machines for classification and regression. University of Southampton
  • 12. Hallenburg JK (1984) Geophysical logging for mineral and engineering applications. PennWell Books, Tulsa, Oklahoma, p 254
  • 13. Karimian M, Fathianpou N, Moghadasi J (2013) The porosity prediction of one of iran south oil field carbonate reservoirs using support vector regression. Iran J Oil Gas Sci Technol 2(3):25–36
  • 14. Le VH, Liu F, Tran DK (2009) Fuzzy linguistic logic programming and its applications. Theory Pract Log Program (TPLP) 9(3):309–41
  • 15. Lim KM, Sim YC, Oh KW (2002) A Face Recognition System Using Fuzzy Logic and Artificial Neural Network, IEEE. In: IEEE International Conference on Fuzzy Systems, USA
  • 16. Lin C, Wang S (2002) Fuzzy support vector machines. IEEE Trans Netw 13(2):464–471
  • 17. Moradi S (2016) Determination of shale volume and distribution patterns and effective porosity from well log data based on cross-plot
  • 18. Rafik B, Kamel B (2016) prediction of permeability and porosity from well log data using the nonparametric regression with multivariate analysis and neural network, hassi r’mel field algeria. Egypt J Pet 26(3):763–778
  • 19. Rezaee MR, Kadkhodaei-Ilkhchi A, Mohammadi Alizadeh P (2008) Intelligent approaches for the synthesis of petrophysical logs. J Geophys Eng 5:12–26
  • 20. Rosenblatt F (1957) The Perceptron: a perceiving and recognizing automaton. Report 85–460–1, Cornell aeronautical laboratory
  • 21. Rustam Z, Nurrimah Hidayat R (2019) Indonesia composite index prediction using fuzzy support vector regression with fisher score feature selection. Int J adv sci Eng Inform Technol 9(1):121–128
  • 22. Saputro O, Maulana A, Latief F (2016) porosity log prediction using artificial neural network. J Phys Conf Ser 739:012092
  • 23. Sinaga T, Rosid M, Haidar M (2019) porosity prediction using neural network based on seismic inversion and seismic attributes. E35 Web Conf 125:15006
  • 24. Suykens JAK, Van Gestel T, Brabanter J, De Moor B, Vandewalle J (2002) Least Squares Support Vector Machines. World Scientific, Singapore
  • 25. Tayyebi J, Hosseinzadeh E (2020) A fuzzy c-means algorithm for clustering fuzzy data and its application in clustering incomplete data. J Od AI Data Min 8(4):515–523
  • 26. Van Gestel T, Suykens JAK, Baestaens D-E, Lambrechts A, Lanckriet G, Vandaele B, De Moor B, Vandewalle J (2001) Financial time seriesprediction using least squares support vector machines within the evidenceframework. IEEE Trans Neural Networks 12(4):809–821
  • 27. Vapnik VN (1982) Estimation of Dependences Based on Empirical Data. Springer, Berlin
  • 28. Vapnik VN (1995) The Nature of Statitical learning Theory. Springer, New York
  • 29. Vapnik, V.N., Chervonenkis, A., (1979), Theory of Pattern Recognition [in Russian]. Nauka, Moscow (German Translation: Wapnik W., Tscherwonenkis A., Theories der Zeichenerkennung, Akademie-Verlag, Berlin.
  • 30. Wang Z, Yang Ch, Oh S, Fu Z, Pedrycz W (2020) Robust multi-linear fuzzy svr designed with aid of fuzzy c-means clustering based on insensitive data information. IEEE Access 8:184997–5011
  • 31. Yang M, Nataliani Y (2017) Robust-learning fuzzy c-means clustering algorithm with unknown number of clusters. Pattern Recogn 71:45–49
  • 32. Zadeh., L.A. (1965) Fuzzy sets. Inf Control 8(3):338–353
  • 33. Zhang CY, Wang Z, Fei CW, Yuan ZS, Wei JS, Tang WZ (2019) Fuzzy multi-SVR learning model for reliability-based design optimization of turbine blades. Materials 12(15):2341
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b7e17787-acfb-4a3d-8b35-f1d31adcb6e9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.