PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The role of big data in Industry 4.0 in mining industry in Serbia

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The current age characterized by unstoppable progress and rapid development of new technologies and methods such as the Internet of Things, machine learning and artificial intelligence, brings new requirements for enterprise information systems. Information systems ought to be a consistent set of elements that provide a basis for information that could be used in context to obtain knowledge. To generate valid knowledge, information must be based on objective and actual data. Furthermore, due to Industry 4.0 trends such as digitalization and online process monitoring, the amount of data produced is constantly increasing – in this context the term Big Data is used. The aim of this article is to point out the role of Big Data within Industry 4.0. Nevertheless, Big Data could be used in a much wider range of business areas, not just in industry. The term Big Data encompasses issues related to the exponentially growing volume of produced data, their variety and velocity of their origin. These characteristics of Big Data are also associated with possible processing problems. The article also focuses on the issue of ensuring and monitoring the quality of data. Reliable information cannot be inferred from poor quality data and the knowledge gained from such information is inaccurate. The expected results do not appear in such a case and the ultimate consequence may be a loss of confidence in the information system used. On the contrary, it could be assumed that the acquisition, storage and use of Big Data in the future will become a key factor to maintaining competitiveness, business growth and further innovations. Thus, the organizations that will systematically use Big Data in their decision-making process and planning strategies will have a competitive advantage.
Wydawca
Rocznik
Strony
166--173
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
  • VŠB – Technical University of Ostrava–Czech Republic
  • VŠB – Technical University of Ostrava–Czech Republic
Bibliografia
  • [1] Amara, A. D., 2013. Google’s self-driving car gathers nearly 1 GB/sec. Kurzweil. Available from: https://www.kurzweilai.net/googles-self-driving-car-gathers-nearly-1-gbsec
  • [2] Cloud Security Alliance, 2013. Expanded Top Ten Big Data Security and Privacy Challenges. DOI: 10.13140/RG.2.1.1744.1127
  • [3] DAMA UK Working Group, 2013. The six primary dimensions for data quality assessment. Available from: https://www.whitepapers.em360tech.com/wp-content/files_mf/1407250286DAMAUKDQDimensionsWhitePaperR37.pdf
  • [4] English, L., 1999. Improving Data Warehouse and Business Information Quality, Wiley, New York.
  • [5] Gulf Business Machine, 2019. The Unspoken truth: The role of cybersecurity in breaking the digital transformation deadlock. GBM 8th Annual Security Survey 2019.Available from: https://gbmme.com/wp-content/uploads/2019/10/GBM-Security-Whitepaper-2019.pdf
  • [6] Hwang, K., Chen, M., 2017. Big-data analytics for cloud, IoT and cognitive computing, Wiley, Hoboken.
  • [7] nternational Data Corporation, 2019. The Growth in Connected IoT Devices Is Expected to Generate 79.4ZB of Data in 2025, According to a New IDC Forecast. Available from: https://www.idc.com/getdoc.jsp?containerId=prUS45213219
  • [8] Lake, P., Drake, R., 2014. Information Systems Management in the Big Data Era, Springer, Cham.
  • [9] Laney, D., 2001. 3D Data Management: Controlling Data Volume, Velocity and Variety. META Group. Available from: https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
  • [10] Lee, J., Lapira E., Bagheri, B., Kao, H., 2013. Recent advances and trends in predictive manufacturing systems in big data environment. Manufacturing Letters 1(1), 38-41, DOI: 10.1016/j.mfglet.2013.09.005
  • [11] Liew, A., 2007. Understandingdata, information, knowledge, and their interrelationships. Journal of Knowledge Management Practice, 7(2), 1-10.
  • [12] Manyika, J. et al., 2011. Big data: The next frontier for innovation, competition. and productivity. McKinsey Global Institute. Available from:https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/big-data-the-next-frontier-for-innovation
  • [13] Moura, J. A., Serrao, C., 2015. Security and Privacy Issues of Big Data.Handbook of Research on Trends and Future Directions in Big Data and Web Intelligence, 20-52, DOI: 10.4018/978-1-4666-8505-5.ch002
  • [14] Novotný, O., Pour, J., Slánský D., 2005.Business intelligence: jak využít bohatství ve vašich datech. Grada Publishing, Praha.
  • [15] Tao, F., Qi, Q., Liu, A., Kusiak, A., 2018. Data-driven smart manufacturing: An Over-view and Perspective.Journal of Manufacturing Systems,48 (1), 157-169, DOI: 10.1016/j.jmsy.2018.01.006
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b7e0e0d8-fc22-4dd1-aa5e-4b581a98e47a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.