PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical Modelling and Experimental Testing on Polyurethane Adhesively Bonded Joints Behaviour in Wood-Wood and Wood-Carbon Fibre Reinforced Polymer Layouts

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Scientists do a variety of laboratory tests on timber and wood-containing composites. An example is adhesively bonded joints in such materials. Despite a wide range of empirical research, consideration of adhesive layers or surfaces in a structure is commonly done in a very simplified manner - they are often modelled as a perfect connection between adherends. It means the cohesive stiffness and opportunity of progressive delamination are neglected. This may lead to an overestimation of the structural load-bearing capacity. The article presents wood-wood and wood-CFRP adhesively bonded joints’ investigations, based on own experimental testing technique (covering a current one as a Digital Image Correlation), analytical double-lap model for adhesives and advanced numerical Finite Element approach. The aim of the paper is to give the guidelines for complex, non-linear modelling of connections in glue laminated timber and wood-CFRP composites that can be utilised for many purposes.
Twórcy
  • Faculty of Civil Engineering and Architecture, Lublin University of Technology, ul. Nadbystrzycka 40, 20-618 Lublin, Poland
Bibliografia
  • 1. Kawecki B., Podgórski J. 3D ABAQUS simulation of bent softwood elements. Archives of Civil Engineering 2020; 66: 323–337.
  • 2. Kawecki B., Podgórski J. The effect of glue cohesive stiffness on the elastic performance of bent wood–CFRP Beams. Materials 2020; 13: 1–23.
  • 3. Kawecki B. Selection of the parameters for numerical models of full girders made of wood-polymer composites reinforced with fibres (in Polish), Wydawnictwo Politechniki Lubelskiej, Lublin, Poland. http://bc.pollub.pl/dlibra/publication/13966, 2021.
  • 4. Kawecki B. Guidelines for FEM modelling of wood-CFRP beams using ABAQUS, Archives of Civil Engineering 2021; 67: 175–191.
  • 5. Lavisci P., Berti S., Pizzo B., Triboulot P., Zanuttini R. A shear test for structural adhesives used in the consolidation of old timber. Holz Als Roh- Und Werkstoff 2001; 59: 145–152.
  • 6. Gereke T., Hering S., Niemz P. Finite element analysis of wood adhesive joints, Annals of Warsaw University of Life Sciences – SGGW. Forestry and Wood Technology 2015; 89: 36–49.
  • 7. Henrique de Almeida D., Schmitt Cavalheiro R., Borges de Macêdo L., Calil Neto C., Luis Christoforo A., Calil Junior C., Antonio Rocco Lahr F. Evaluation of quality in the adhesion of glued laminated timber (Glulam) of paricá and lyptus wood species. International Journal of Materials Engineering 2014; 4: 114–118.
  • 8. Cavalheiro R.S., Neto C.C., Christoforo A.L., Junior C.C., Lahr F.A.R. Evaluation of shear strength and cyclic delamination of paricá (schizolobium amazonicum) glued laminated timber. International Journal of Materials Engineering 2016; 6: 60–65.
  • 9. Rudawska A., Maziarz M., Šajgalík M., Valášek P., Zlamal T., Iasnii V. The influence of selected factors on the strenght of wood adhesive joints. Advances in Science and Technology Research Journal 2018; 12: 47–54.
  • 10. Wang V.Z., Ginger J.D., Narayan K. Intralaminar and interlaminar fracture characterization in gluedlaminated timber members using image analysis. Engineering Fracture Mechanics 2012; 82: 73–84.
  • 11. Xu B.H., Zhao Y.H., Guo J.H., Wang Y.X. Fracture toughnesses of interlaminar fracture of glued-laminated timber. Wood Research 2016; 61: 951–958.
  • 12. Fortino S., Zagari G., Mendicino A. L., Dill-Langer G., A simple approach for FEM simulation of Mode I cohesive crack growth in glued laminated timber under short-term loading. Rakenteiden Mekaniikka (Journal of Structural Mechanics) 2012; 45: 1–20.
  • 13. Vessby J., Serrano E., Enquist B. Contact-free measurement and numerical and analytical evaluation of the strain distribution in a wood-FRP lap-joint. Materials and Structures 2010; 43: 1085–1095.
  • 14. Wan J., Smith S.T., Qiao P.Z. FRP-to-softwood joints: experimental investigation. In: 5th Int. Conf. FRP Compos. Civ. Eng., 2010; 1–5.
  • 15. Wan J., Smith S.T., Qiao P., Chen F. Experimental investigation on FRP-to-timber bonded interfaces. Journal of Composites for Construction 2014; 18: 1–9.
  • 16. Biscaia H.C., Cruz D., Chastre C. Analysis of the debonding process of CFRP-to-timber interfaces. Construction and Building Materials 2016; 113: 96–112.
  • 17. Subhani M., Globa A., Al-Ameri R., Moloney J. Effect of grain orientation on the CFRP-to-LVL bond. Composites Part B: Engineering 2017; 129: 187–197.
  • 18. Vahedian A., Shrestha R., Crews K. Bond strength model for externally bonded FRP-to-timber interface. Composite Structures 2018; 200: 328–339.
  • 19. Vahedian A., Shrestha R., Crews K. Analysis of externally bonded Carbon Fibre Reinforced Polymers sheet to timber interface. Composite Structures 2018; 191: 239–250.
  • 20. Vahedian A., Shrstha R., Crews K. Experimental investigation on the effect of bond thickness on the interface behaviour of fibre reinforced polymer sheet bonded to timber. International Journal of Structural and Construction Engineering 2018; 12: 1157–1163.
  • 21. Vahedian A., Shrestha R., Crews K. Effective bond length and bond behaviour of FRP externally bonded to timber. Construction and Building Materials 2017; 151: 742–754.
  • 22. Biscaia H.C., Chastre C., Cruz D., Viegas A. Prediction of the interfacial performance of CFRP laminates and old timber bonded joints with different strengthening techniques. Composites Part B: Engineering 2017; 108: 1–17.
  • 23. Arriaga F., Íñiguez-Gonzales G., Esteban M. Bonding shear strength in timber and GFRP glued with epoxy adhesives. Wood Research, 2011; 56: 297–310.
  • 24. Sena-Cruz J., Jorge M., Branco J.M., Cunha V.M.C.F. Bond between glulam and NSM CFRP laminates. Construction and Building Materials 2013; 40: 260–269.
  • 25. Fava G., Carvelli V., Poggi C. Pull-out strength of glued-in FRP plates bonded in glulam. Construction and Building Materials 2013; 43: 362–371.
  • 26. Lee Y., Park J., Hong S., Kim S. A study of bond of structural timber and carbon fiber reinforced polymer plate. Materials Science 2015; 21: 563–567.
  • 27. Nowak T.P., Jasieńko J., Czepiżak D. Experimental tests and numerical analysis of historic bent timber elements reinforced with CFRP strips. Construction and Building Materials 2013; 40: 197–206.
  • 28. Glišović I., Pavlović M., Stevanović B., Todorović M. Numerical analysis of glulam beams reinforced with CFRP plates. Journal of Civil Engineering and Management 2017; 23: 868–879.
  • 29. Khelifa M., Auchet S., Méausoone P.-J., Celzard A. Finite element analysis of flexural strengthening of timber beams with Carbon Fibre-Reinforced Polymers. Engineering Structures 2015; 101: 364–375.
  • 30. Ramamurthi M., Lee J.-S., Yang S.-H., Kim Y.-S., Delamination characterization of bonded interface in polymer coated steel using surface based cohesive model. International Journal of Precision Engineering and Manufacturing 2013; 14: 1755–1765.
  • 31. Needleman A. Some issues in cohesive surface modeling, Procedia IUTAM 2014; 10: 221–246.
  • 32. Ali A., Lo Conte A., Biffi C.A., Tuissi A. Cohesive surface model for delamination and dynamic behavior of hybrid composite with SMA-GFRP interface, International Journal of Lightweight Materials and Manufacture 2019; 2: 146–155.
  • 33. Camanho P.P., Davila C.G., de Moura M.F. Numerical simulation of mixed-mode progressive delamination in composite materials. Journal of Composite Materials 2003; 37: 1415–1438.
  • 34. Song K., Davila C., Rose C. Guidelines and parameter selection for the simulation of progressive delamination, in: ABAQUS User’s Conf., 2008; 1–15.
  • 35. Moslemi M., Khoshravan M. Cohesive zone parameters selection for mode-I prediction of interfacial delamination, Strojniški Vestnik – Journal of Mechanical Engineering 2015; 61: 507–516.
  • 36. Lepore M.A., Perrella M. From test data to FE code: a straightforward strategy for modelling the structural bonding interface, Frattura Ed Integrità Strutturale 2016; 11: 191–201.
  • 37. de Moura M.F.S.F., Campilho R.D.S.G., Gonçalves J.P.M. Pure mode II fracture characterization of composite bonded joints. International Journal of Solids and Structures, 2009; 46: 1589–1595.
  • 38. Stuparu F.A., Constantinescu D.M. Interface damage characterization through cohesive parameters. Journal of Engineering Studies and Research 2012; 18: 129–139.
  • 39. Mohammadi B., Salimi-Majd D. Investigation of delamination and damage due to free edge effects in composite laminates using cohesive interface elements. Engineering Solid Mechanics, 2014; 2: 101–118.
  • 40. Soroush M., Fard K.M., Shahravi M. Finite element simulation of interlaminar and intralaminar damage in laminated composite plates subjected to impact. Latin American Journal of Solids and Structures 2018; 15.
  • 41. Sitnikova E., Li D., Wei J., Yi X., Li S. On the representativeness of the cohesive zone model in the simulation of the delamination problem. Journal of Composites Science, 2019; 22.
  • 42. Turon A., Dávila C.G., Camanho P.P., Costa J. An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Engineering Fracture Mechanics 2007; 74: 1665–1682.
  • 43. Alfano G., Crisfield M.A. Finite element interfacemodels for the delamination analysis of laminated composites: mechanical and computational issues. International Journal for Numerical Methods in Engineering 2001; 50: 1701–1736.
  • 44. Falk M.L., Needleman A., Rice J.R. A critical evaluation of dynamic fracture simulations using cohesive surfaces. J. Phys. IV Proc. 2001: 43–50.
  • 45. Davila C., Camanho P., de Moura M. Mixed-mode decohesion elements for analyses of progressive delamination, in: 42nd AIAA/ASME/ASCE/AHS/ASC Struct. Struct. Dyn. Mater. Conf. 2001; 1–12.
  • 46. Simulia ABAQUS 2019 User’s Guide, 2019.
  • 47. Wu E.M., Reuter R.C. Crack extension in fiber-glass reinforced plastics, 1965.
  • 48. Benzeggagh M.L., Kenane M. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixedmode bending apparatus. Composites Science and Technology 1996; 56: 439–449.
  • 49. Panettieri E., Fanteria D., Firrincieli A. Damage initialization techniques for non-sequential FE propagation analysis of delaminations in composite aerospace structures. Meccanica 2015; 50: 2569–2585.
  • 50. Abdulla K.F., Cunningham L.S., Gillie M. Simulating masonry wall behaviour using a simplified micro-model approach, Engineering Structures 2017; 151: 349–365.
  • 51. Zoghbi B.E. Modelling of failure mechanism in unidirectional carbon fiber-reinforced polyamide composites using cohesive zone model. International Journal of Composite Materials 2019; 9: 16–23,
  • 52. Demir A., Ozturk H., Edip K., Stojmanovska M., Bogdanovic A. Effect of viscosity parameter on the numerical simulation of reinforced concrete deep beam behavior. The Online Journal of Science and Technology 2018; 8: 50–56.
  • 53. Vu-Quoc L., Tan X.G. Optimal solid shells for non-linear analyses of multilayer composites. I. Statics, Computer Methods in Applied Mechanics and Engineering 2003; 192: 975–1016.
  • 54. Tsai M.Y., Oplinger D.W., Morton J. Improved theoretical solutions for adhesive lap joints. International Journal of Solids and Structures 1998; 35: 1163–1185.
  • 55. Tsai M.Y., Morton J. An investigation into the stresses in double-lap adhesive joints with laminated composite adherends. International Journal of Solids and Structures 2010; 47: 3317–3325.
  • 56. Xiao X., Foss P.H., Schroeder J.A. Stiffness prediction of the double lap shear joint. Part1: Analytical solution. International Journal of Adhesion and Adhesives 2004; 24: 229–237.
  • 57. Kläusler O., Clauß S., Lübke L., Trachsel J., Niemz P. Influence of moisture on stress–strain behaviour of adhesives used for structural bonding of wood. International Journal of Adhesion and Adhesives 2013; 44: 57–65.
  • 58. Clauß S., Gabriel J., Karbach A., Matner M., Niemz P. Influence of the adhesive formulation on the mechanical properties and bonding performance of polyurethane prepolymers. Holzforschung 2011; 65: 835–844.
  • 59. Hillerborg A., Modéer M., Petersson P.-E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research 1976; 6: 773–781.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b7decdf0-a54d-4f56-acee-eec05e2502bf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.