PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The use of bottom and a mixture of bottom and fly ash from wood-sunflower biomass combustion in concrete production

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zastosowanie popiołów dennych oraz mieszanki dennych i lotnych ze spalania biomasy drzewno-słonecznikowej do produkcji betonu
Języki publikacji
EN
Abstrakty
EN
As part of the research, concrete mixes containing the addition of bottom ash as well as bottom and fly ash mixtures from the combustion of biomass only were made. The ashes were obtained from the combustion of 80% of wood and 20% of sunflower in a fluidized bed boiler. In the study, the elemental composition of ashes was determined by testing with an XRF X-ray spectrometer. Ashes in the amount of 10, 20 and 30% of the cement mass were used as a substitute for sand for testing concrete samples. During the preparation of concrete mixes, tests of consistency and air content in the mixes were carried out. Concrete samples were tested in terms of e.g. compressive strength, water absorption or frost resistance. The compressive strength of the samples with the addition of bottom ash was lower than the strength of the control samples. The use of a mixture of ashes allowed to improve this property and each of the samples obtained a higher compressive strength than samples without the addition of ash. The addition of ashes significantly improves the frost resistance of concrete, i.e. reduces the decrease in the compressive strength of concrete after frost resistance tests. The absorbability of the samples, regardless of the amount and type of added ash, changed slightly in relation to the control samples.
PL
W ramach badań wykonano mieszanki betonowe zawierające dodatek popiołu dennego oraz mieszanki popiołu dennego i lotnego pochodzących ze spalania wyłącznie biomasy. Popioły powstały ze spalania w kotle fluidalnym 80% drewna oraz 20% słonecznika. W badanich określono skład pierwiastkowy popiołów poprzez badania spektrometrem rentgenowskim XRF. Do badan próbek betonów użyto popiołów w ilości 10, 20 i 30% masy cementu jako zamiennik piasku. Podczas sporządzania mieszanek betonowych wykonano badania konsystencji oraz zawartości powietrza w mieszankach. Próbki betonów badano pod względem m.in. wytrzymałości na ściskanie, nasiąkliwości czy mrozoodporności. Wytrzymałość na ściskanie próbek z dodatkiem popiołu dennego była mniejsza od wytrzymałości próbek kontrolnych zarówno po 7, 28 i 56 dniach dojrzewania. Zastosowanie mieszanki popiołów pozwoliło na poprawienie tej właściwości i każda z próbek uzyskała wyższą wytrzymałość na ściskanie niż próbki bez dodatku popiołu. Z analizy uzyskanych wyników wywnioskować można, że stosowanie takich dodatków w zależności od ich rodzaju oraz ilości dodatku popiołu powoduje, że modyfikowane odpadem betony charakteryzują się zbliżoną lub wyższą wytrzymałością niż beton kontrolny. Dodatek popiołów zdecydowanie poprawia mrozoodporność betonów czyli powoduje zmniejszenie spadku wytrzymałości na ściskanie betonów po badaniach mrozoodporności. Nasiąkliwość próbek niezleżnie od ilości oraz rodzaju dodanego popiołu zmieniała się nieznacznie względem próbek kontrolnych.
Rocznik
Strony
19--35
Opis fizyczny
Bibliogr. 53 poz., il., tab.
Twórcy
autor
  • Czestochowa University of Technology, Faculty of Civil Engineering, Czestochowa, Poland
  • Czestochowa University of Technology, Faculty of Civil Engineering, Czestochowa, Poland
Bibliografia
  • [1] Z.T. Yao, X.S. Ji, P.K. Sarker, J.H. Tang, L.Q. Ge, M.S. Xia, and Y.Q. Xi, “A comprehensive review on the applications of coal fly ash”, Earth-Science Reviews, vol. 141, pp. 105-121, 2015, doi: 10.1016/j.earscirev.2014.11.016.
  • [2] J. Yang, L. Zeng, X. He, Y. Su, Y. Li, H. Tan, B.Jiang, H. Zhu, and S.K. Oh, “Improving durability of heat-cured high volume fly ash cement mortar by wet-grinding activation”, Construction and Buildings Materials, vol. 289, art. no. 123157, 2021, doi: 10.1016/j.conbuildmat.2021.123157.
  • [3] Q. Huang and L. Zhao, “Correlation between compressive strengths and water absorption of fly ash cement mortar immersed in water”, Civil Engineering and Architecture, vol. 65, no. 3, pp. 141-152, 2019, doi: 10.2478/ace-2019-0040.
  • [4] A. Yerramala, R. Chandurdu, and B. Desai, “Influence of fly ash replacement on strength properties of cement mortar”, International Journal of Engineering, Science and Technology (IJEST), vol. 4, pp. 3657-3665, 2012.
  • [5] C. Argiz, E. Menéndez, and M.A. Sanjuán, “Effect of mixes made of coal bottom ash and fly ash on the mechanical strength and porosity of Portland cement”, Materiales de Construcción, vol. 63, no. 309, pp. 49-64, 2013, doi: 10.3989/mc.2013.03911.
  • [6] W.J. Fan, X.Y.Wang, and K.B. Park, “Evaluation of the Chemical and Mechanical Properties of Hardening High-Calcium Fly Ash Blended Concrete”, Materials, vol. 8, no. 9, pp. 5933-5952, 2015, doi: 10.3390/ma8095282.
  • [7] D. Logoń, “The effect of limit values of siliceous fly ash content on the durability of concrete structures in relation to exposure classes”, Archives of Civil Engineering, vol. 67, no. 1, pp. 99-110, 2021, doi: 10.24425/ace.2021.136463.
  • [8] A. Machowska, “The Properties of Mass Concrete with CFBC Fly Ash-Slag Binder”, Archives of Civil Engineering, vol. 66, no. 4, pp. 471-484, 2020, doi: 10.24425/ace.2020.135232.
  • [9] R. Kurda, J. de Brito, and J.D. Silvestre, “Combined influence of recycled concrete aggregates and high contents of fly ash on concrete properties”, Construction and Building Materials, vol. 157, pp. 554-572, 2017, doi: 10.1016/j.conbuildmat.2017.09.128.
  • [10] L. Gautam, J.K. Jain, P. Kalla, and S. Choudhary, “A review on the utilization of ceramic waste in sustainable construction products”, Materials Today Proceedings, vo. 43, pp. 1884-1891, 2021, doi: 10.1016/j.matpr.2020.10.829.
  • [11] S. Ray, M. Haque, M.N. Sakib, A.F. Mita, M.D.M. Rahman, and B.B. Tanmoy, “Use of ceramic wastes as aggregates in concrete production. A review”, Journal of Building Engineering, vol. 43, art. no. 102567, 2021, doi: 10.1016/j.jobe.2021.102567.
  • [12] F. Brekailo, E. Pereira, E. Pereira, M. M. Farias, and R.A. Medeiros-Junior, “Red ceramic and concrete waste as replacement of portland cement: Microstructure aspect of eco-mortar in external sulfate attack”, Cleaner Materials, vol. 3, art. no. 100034, 2022, doi: 10.1016/j.clema.2021.100034.
  • [13] M. Mohit and Y. Sharifi, “Ceramic waste powder as alternative mortar-based cementitious materials”, ACI Materials Journal, vol. 116, no. 6, 2019, doi: 10.14359/51716819.
  • [14] A.M. Nayana and P. Rakesh, “Strength and durability study on cement mortar with ceramicwaste and micro-silica”, Materials Today: Proceedings, vol. 5, no. 11, pp. 24780-24791, 2018, doi: 10.1016/j.matpr.2018.10.276.
  • [15] C. Farinha, J. de Brito, and R. Veiga, “Incorporation of fine sanitary ware aggregates in coating mortars”, Construction and Building Materials, vol. 83, pp. 194-206, 2015, doi: 10.1016/j.conbuildmat.2015.03.028.
  • [16] M. Ulewicz and J. Halbiniak, “Application of waste from utilitarian ceramics for production of cement mortar and concrete”, Physicochemical Problems of Mineral Processing, vol. 52, no. 2, pp. 1002-1010, 2016, doi: 10.5277/ppmp160237.
  • [17] A. M. Pitarch, L. Reig, A.E. Tomás, G. Forcada, L. Soriano, M. V. Borrachero, J. Payá, and J.M. Monzó, “Pozzolanic activity of tiles, bricks and ceramic sanitary-ware in eco-friendly Portland blended cements”, Journal of Cleaner Production, vol. 279, art. no. 123713, 2021, doi: 10.1016/j.jclepro.2020.123713.
  • [18] S.K. Adhikary, D.K. Ashish, and Z. Rudžionis, “Expanded glass as light-weight aggregate in concrete – A review”, Journal of Cleaner Production, vol. 313, art. no. 127848, 2021, doi: 10.1016/j.jclepro.2021.127848.
  • [19] N. Omoding, L.S. Cunningham, and G.F. Lane-Serff, ”Effect of using recycled waste glass coarse aggregates on the hydrodynamic abrasion resistance of concrete”, Construction and Building Materials, vol. 268, art. no. 121177, 2021, doi: 10.1016/j.conbuildmat.2020.121177.
  • [20] A. Pietrzak, “Assessment of the impact of recycling from pet bottles in selected concrete properties”, Construction of Optimized Energy Potential, vol. 7, no. 1, pp. 51-56, 2018, doi: 10.17512/bozpe.2018.1.07.
  • [21] R. Šadzevicius, V. Gurskis, and D. Ramukevicius, “Research on the properties of concrete with hemp shives”, Construction of Optimized Energy Potential, vol. 12, no. 1. pp. 25-32, 2023, doi: 10.17512/bozpe.2023.12.03.
  • [22] N. Saikia and J. de Brito, “Use of plastic waste as aggregate in cement mortar and concrete preparation: A review”, Construction and Building Materials, vol. 34, pp. 385-401, 2012, doi: 10.1016/j.conbuildmat.2012.02.066.
  • [23] I.A. Bassam, A. Tayeh, R. Alyousef, H. Alabduljabbar, A.M. Mohamed, and A. Alaskar, “Use of recycled plastic as fine aggregate in cementitious composites: A review“, Construction and Building Materials, vol. 253, art. no. 119146, 2020, doi: 10.1016/j.conbuildmat.2020.119146.
  • [24] A. Pietrzak and M. Ulewicz, “Influence of post-consumer waste thermoplastic elastomers obtained from used car floor mats on concrete properties”, Materials, vol. 16, no. 6, art. no. 2231, 2023, doi: 10.3390/ma16062231.
  • [25] M. Ulewicz and A. Pietrzak, “Properties and structure of concretes doped with production waste of thermoplastic elastomers from the production of car floor mats”, Materials, vol. 14, no. 4, art. no. 872, 2021, doi: 10.3390/ma14040872.
  • [26] A. Pietrzak, “The effect of ashes generated from the combustion of sewage sludge on the basic mechanical properties of concrete”, Construction of Optimized Energy Potential, vol. 8, no. 1, pp. 29-35, 2019, doi: 10.17512/bozpe.2019.1.03.
  • [27] N. Saikia, G. Mertens, K. Van Balen, J. Elsen, T. Van Gerven, and C. Vandecasteele, “Pre-treatment of municipal solid waste incineration (MSWI) bottom ash for utilisation in cement mortar”, Construction and Building Materials, vol. 96, pp. 76-85, 2015, doi: 10.1016/j.conbuildmat.2015.07.185.
  • [28] T. Kalak, P. Szypura, R. Cierpiszewski, and M. Ulewicz, “Modification of Concrete Composition Doped by Sewage Sludge Fly Ash and Its Effect on Compressive Strength”, Materials, vol. 16, no. 11, art. no. 4043, 2023, doi: 10.3390/ma16114043.
  • [29] R.N. Rakhimova and R.Z. Rakhimov, “Alkali-activated cements andmortars based on blast furnace slag and red clay brick waste”, Materials and Design, vol. 85, pp. 324-331, 2015, doi: 10.1016/j.matdes.2015.06.182.
  • [30] T. Lis and K. Nowacki, "Pro-ecological possibilities of using metallurgical waste in the production of aggregates", Production Engineering Archives, vol. 28, no. 3, art. no. 3922, pp. 252–256, 2022 doi: 10.30657/pea.2022.28.31.
  • [31] K.P. Verian, W. Ashraf, and Y. Cao, “Properties of recycled concrete aggregate and their influence in new concrete production”, Resources, Conservation & Recycling, vol. 133, pp. 30-49, 2018, doi: 10.1016/j.resconrec.2018.02.005.
  • [32] M.C. Collivignarelli, G. Cillari, P. Ricciardi, M. C. Miino, V. Torretta, E. C. Rada, and A. Abbà, “The production of sustainable concrete with the use of alternative aggregates: a review”, Sustainability, vol. 12, no. 19, art. no. 7903, 2020, doi: 10.3390/su12197903.
  • [33] M. Ebubekir, G. Hakan, and K. Süleyman, "The Effect of Gradation and Grain-Size Properties of Fine Aggregate on the Building Mortars", Production Engineering Archives, vol. 26, no. 3, pp. 121-126, 2020, doi: 10.30657/pea.2020.26.23.
  • [34] I. B. Topçu and S. Sengel, “Properties of concretes produced with waste concrete aggregate”, Cement and Concrete Research, vol. 34, no. 8, pp. 1307-1312, 2004, doi: 10.1016/j.cemconres.2003.12.019.
  • [35] K. Kalinowska-Wichrowska, E. Pawluczuk, M. Bołtryk, J.R. Jimenez, J.M. Fernandez-Rodriguez, and D. Suescum Morales, “The Performance of Concrete Made with Secondary Products-Recycled Coarse Aggregates, Recycled Cement Mortar, and Fly Ash-Slag Mix”, Materials, vol. 15, no. 4, art. no. 1438, 2022, doi: 10.3390/ma15041438.
  • [36] H.Y. Wang, W.T. Kuo, C.C. Lin, and C.P. Yo, “Study of the material properties of fly ash added to oyster cement mortar”, Construction and Building Materials, vol. 41, pp. 532-537, 2013, doi: 10.1016/j.conbuildmat.2012.11.021.
  • [37] B. Yan, K. Joseph A. Kouame,W. Lv, P. Yang, and M. Cai, “Modification and in-place mechanical characteristics research on cement mortar with fly ash and lime compound admixture in high chlorine environment”, Journal of Materials Research and Technology, vol. 8, no. 1, pp. 1451-1460, 2019, doi: 10.1016/j.jmrt.2018.10.011.
  • [38] D. Jain, R. Gupta, R. Choudhary, T. Alomayri, and V. Agrawal, “Utilization of marble dust and fly ash in composite mortar as partial cement substitute”, Materials Today: Proceedings, vol. 60, pp. 181-186, 2022, doi: 10.1016/j.matpr.2021.12.301.
  • [39] S.V. Vassilev, D. Baxter, L.K. Andersen, and C. G. Vassileva, “An overview of the chemical composition of biomass”, Fuel, vol. 89, no. 5, pp. 913-933, 2010, doi: 10.1016/j.fuel.2009.10.022.
  • [40] N.M. Chanu and T.K. Devi, “Contribution of rice husk ash to the properties of cement mortar and concrete”, International Journal of Engineering Research & Technology, vol. 2, no. 2, pp. 1-7, 2013.
  • [41] B. Chatveera and P. Lertwattanaruk, “Evaluation of nitric and acetic acid resistance of cement mortars containing high-volume black rice husk ash”, Journal of Environmental Management, vol. 133, pp. 365-373, 2014, doi: 10.1016/j.jenvman.2013.12.010.
  • [42] S. Munshi, R.P. Sharma, and T. Chatterjee, “Investigation on the mechanical properties of cement mortar with sustainable materials”, Materials Today: Proceedings, vol. 47, pp. 4833-4837, 2021, doi: 10.1016/j.matpr.2021.06.057.
  • [43] M.H. Rashid, “Strength behavior of cement mortar assimilating rice husk ash”, International Journal of Advances in Agricultural and Environmental Engineering, vol. 3, no. 2, pp. 288-293, 2016.
  • [44] A.U. Elinwa and S.P. Ejeh, “Effects of incorporation of saw dust incineration fly ash in cement pastes and mortar”, Journal of Asian Architecture and Building Engineering, vol. 3, no. 1, pp. 1-7, 2004, doi: 10.3130/jaabe.3.1.
  • [45] J. Popławski and M. Lelusz, “Assessment of Sieving as a Mean to Increase Utilization Rate of Biomass Fly Ash in Cement-Based Composites”, Applied Sciences, vol. 13, no. 3, art. no. 1659, 2023, doi: 10.3390/app13031659.
  • [46] J. Popławski, “Influence of biomass fly-ash blended with bituminous coal fly-ash on properties of concrete”, Construction of Optimized Energy Potential, vol. 9, no. 1, pp. 89-96, 2020, doi: 10.17512/bozpe.2020.1.11.
  • [47] K.W. Kim, K.T. Park, F. Ates, H.G. Kim, and B.H. Woo, “Effect of pretreated biomass fly ash on the mechanical properties and durability of cement mortar”, Case Studies in Construction Materials, vol. 18, art. no. e01754, 2023, doi: 10.1016/j.cscm.2022.e01754.
  • [48] C. B. Farinha, J.de Brito, and R. Veiga, “Influence of forest biomass bottom ashes on the fresh, water and mechanical behaviour of cement-based mortars”, Resources, Conservation & Recycling, vol. 149, pp. 750-759, 2019, doi: https://doi.org/10.1016/j.resconrec.2019.06.020.
  • [49] F. C. R. Almeida, A. Sales, J.P. Moretti and P.C.D. Mendes, “Sugarcane bagasse ash sand (SBAS): Brazilian agroindustrial byproduct for use in mortar”, Constrction and Buildings Materials, vol. 82, pp. 31-38, 2015, doi: 10.1016/j.conbuildmat.2015.02.039.
  • [50] M. Ulewicz and J. Jura, “Influence of mix fly and bottom ashes from biomass on selected properties of cement mortars”, Key Engineering Materials, vol. 828, pp. 14-17, 2020, doi: 10.4028/www.scientific.net/KEM.828.14.
  • [51] M. Ulewicz and J. Jura, “Influence of bottom ashes from biomass on compressive strength of concretes”, Materials Science Forum, vol. 972, pp. 3-9, 2019, doi: 10.4028/www.scientific.net/MSF.972.3.
  • [52] J. Jura, “Influence of type of biomass burned on the properties of cement mortar containing fly ash”, Construction of Optimized Energy Potential, vol. 9, no. 1, pp. 77-82, 2020, doi: 10.17512/bozpe.2020.1.09.
  • [53] J. Jura and M. Ulewicz, “Assessment of the possibility of using fly ash from biomass combustion for concrete”, Materials, vol. 14, no. 21, art. no. 6708, 2021, doi: 10.3390/ma14216708.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b7dc96ed-6728-4cd7-8a80-a3bc8d201cfa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.