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Abstract

Introducing variation in the training dataset through data augmentation has been a popular
technique to make Convolutional Neural Networks (CNNs) spatially invariant but leads
to increased dataset volume and computation cost. Instead of data augmentation, augmen-
tation of feature maps is proposed to introduce variations in the features extracted by a
CNN. To achieve this, a rotation transformer layer called Rotation Invariance Transformer
(RiT) is developed, which applies rotation transformation to augment CNN features. The
RiT layer can be used to augment output features from any convolution layer within a
CNN. However, its maximum effectiveness is shown when placed at the output end of fi-
nal convolution layer. We test RiT in the application of scale-invariance where we attempt
to classify scaled images from benchmark datasets. Our results show promising improve-
ments in the networks ability to be scale invariant whilst keeping the model computation
cost low.
Keywords: Convolutional Neural Network, Feature Map Augmentation, Global Features,
Scale-Invariant, Vision System

1 Introduction

The human vision system can easily filter in-
formation from the environment, and has the abil-
ity to recognise objects despite their changes in
size, orientation and position. Whilst physiological
studies explain this phenomena as automatic invari-
ance encoding within the ventral stream in the vi-
sion system [1], there is limited evidence to explain
how invariance encoding happens within the ven-
tral stream. Similarly, Convolutional Neural Net-
works (CNNs) remain limited in their ability to be

a truly invariant class of algorithms despite having
surpassed performance of the vision system in some
targetted and specific tasks. Given the lack of theo-
retical and empirical evidence it therefore remains a
difficult problem to make CNNs invariant to object
detection or classification.

To solve the problem of invariance in CNNs,
research work has mostly focused on finding solu-
tions for individual invariance problems separately
such as rotation invariance, translation invariance
and scale invariance. Introducing variation in the
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training dataset through data augmentation has been
a popular technique to make CNNs spatially invari-
ant but this technique leads to increased dataset vol-
ume and computation cost of the models. Based
on the understanding that CNNs employ a local-
to-global feature extraction strategy, and that it is
the high-level global features that are used for final
prediction suggests that creating variations in these
high-level global features instead of input data may
be useful to make CNNs recognise variations in the
object brought about by changes in their size, orien-
tation or position in the scene. Though there is no
physiological evidence to suggest a similar process
happens in the ventral stream, the theory of data
augmentation applied to feature maps in a CNN pro-
vides an opportunity to make CNNs more invariant
to image classification and object detection. While
we note there are many classes of invariance prob-
lems to solve such as rotation invariance, transla-
tion invariance and scale invariance, in this work
we present the case study of the augmentation of
feature for improving scale invariance in CNNs.

Motivated by the above opportunities, Kumar &
Sharma [2] proposed a novel method that allows
CNNs to improve scale invariance by augmenta-
tion of feature maps. It is achieved by creating a
transformer layer called Rotation Invariance Trans-
former (RiT) that can be placed at the output end of
a convolution layer. This method is initially trialled
using only one form of augmentation for the feature
maps - rotation since other forms of transformations
such as scaling and translation would cause loss of
feature pixel values from the feature maps. Unlike
data augmentation methods, this technique does not
involve any manipulation of input data. Further-
more, feature map augmentation is suggested in the
deeper end of the CNN feature extractor pipeline, al-
lowing the classifier to learn variations of the input
data in terms of its transformed high-level global
features. The end-to-end CNN model containing
the RiT layer is called the Rotation Transformer
Network (RTN). In [2], the authors tested the model
on rotation invariance. We extend their work by
demonstrating and assessing the application of the
RiT layer for improving scale invariance in CNNs.

Extensive experiments are conducted to evalu-
ate scale invariance performance of RTNs on widely
used CNN architectures and benchmark datasets.
The results are presented for LeNet5 ([3]), VGG-16

([4]) and ResNet-18 [5] networks trained on CIFAR-
10 ([6]), FMNIST ([7]), Tiny ImageNet ([8]) and
ImageHoof ([9]) datasets. First, the datasets are
trained on models LeNet5, VGG-16 and ResNet-18
models to establish benchmark results and for com-
parison. Then, RiT layer is added to these backbone
CNNs and the networks are then retrained on the
same datasets. Whilst the RiT is not trained within
the networks due to having no trainable parame-
ters, it plays the role of augmenting feature maps
generated within the network. The effect of trans-
forming feature maps (by applying rotations) on the
network’s ability to classify test images subjected
to varying scales is studied and compared with the
benchmark results. The experimental results show
promising improvements in the networks ability to
classify scaled images over benchmark networks
used without requiring changes to the rest of the
model architecture.

This paper aims to contribute to the body of
knowledge towards finding effective solutions to
classification of scaled images by:

1. showing the usefulness of augmenting feature
maps as an alternative to data augmentation to
solve scale invariance classification,

2. showing that augmentation of feature maps ap-
plied through transformation of rotation has ben-
efits towards promoting scale invariance,

3. demonstrating through ablation studies that aug-
mentation of feature maps from the deeper end
of the CNN module are more effective towards
scale invariance task then augmentation of fea-
ture maps from earlier layers of the CNN archi-
tecture, and

4. showing the effectiveness of the RTN model [2]
towards scale invariance classification in addi-
tion to rotation invariance, through additional ex-
tensive experiments on differently sized datasets
and benchmark models.

The rest of the paper is organised as follows:
Section 2 reviews related work while Section 3 in-
troduces the RTN model. Section 4 describes the
experiment design and results are presented in Sec-
tion 5. A summary of outcomes are provided in Sec-
tion 6.
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training dataset through data augmentation has been
a popular technique to make CNNs spatially invari-
ant but this technique leads to increased dataset vol-
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physiological evidence to suggest a similar process
happens in the ventral stream, the theory of data
augmentation applied to feature maps in a CNN pro-
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we note there are many classes of invariance prob-
lems to solve such as rotation invariance, transla-
tion invariance and scale invariance, in this work
we present the case study of the augmentation of
feature for improving scale invariance in CNNs.
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Sharma [2] proposed a novel method that allows
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classify scaled images over benchmark networks
used without requiring changes to the rest of the
model architecture.
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classification of scaled images by:

1. showing the usefulness of augmenting feature
maps as an alternative to data augmentation to
solve scale invariance classification,

2. showing that augmentation of feature maps ap-
plied through transformation of rotation has ben-
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mentation of feature maps from the deeper end
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ture maps from earlier layers of the CNN archi-
tecture, and
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towards scale invariance classification in addi-
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tensive experiments on differently sized datasets
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2 Background

We summarise below the main advances in re-
search in vision systems providing the basis for the
current research and the presented outcomes.

Figure 1. HMAX hierarchical model of the visual
cortex ([10, 11]). Primary, secondary and
quaternary visual areas are represented by

acronyms V1, V2 and V4 (Secondary Visual
Cortex) respectively. Posterior and anterior

inferotemporal areas are represented by PIT and
AIT respectively.

2.1 Information processing in the Vision
System

The visual system employs a one-shot invari-
ance encoding within the ventral system ([1]). The
process of encoding object invariances begins as vi-
sual stimuli captured on the retina propagates via
low-level cells to complex cells ([12, 13, 14, 15]).

CNNs model HMAX (Hierarchical MAX-
pooling) hierarchical computational model of the
visual cortex (see Figure 1)) through successive
layers of convolution layers in the feature extrac-
tor part of the network, and thus, use the local-to-
global feature extraction strategy to recognise ob-
jects. In CNNs, global features are represented as
high-level features (complex features) generated by
an aggregation of low-level features (local features)
extracted in the early convolution layers of a CNN.
At this stage in a CNN, global features tend to rep-
resent specific discriminative parts of an object or
image that the network uses to identify objects dur-
ing classification. These global features are then
forward propagated to the classifier in the CNN for
learning. This means CNNs only use features from
the final convolution layer in the feature extractor.
[16] further point out that high-level global features
in the deeper layers of CNN are more discrimina-
tive for classification task and appropriate to charac-
terize objects with complex characteristics; hence,
useful for handling invariant object classification or
detection.

Motivated by a) findings of physiological stud-
ies that invariance happens within the ventral
stream, b) the property of high-level global features
in the CNN to be more discriminative for classifi-
cation task and appropriate to characterize objects
with complex characteristic, and c) the potential
benefits of the application of data augmentation, [2]
proposed a novel method that allows CNNs to im-
prove scale invariance by augmentation of feature
maps. It is achieved by creating a transformer layer
called Rotation Invariance Transformer (RiT) that
can be placed at the output end of a convolution
layer. This method is initially trialled using only
one form of augmentation for the feature maps - ro-
tation. In RiT, features are rotated by a given set
of rotation parameters which are then passed to the
next layer. Unlike data augmentation methods, this
technique does not involve any manipulation of in-
put data. Furthermore, feature map augmentation
is suggested in the deeper end of the CNN feature
extractor pipeline, allowing the classifier to learn
variations of the input data in terms of its trans-
formed high-level global features. The end-to-end
CNN model containing the RiT layer is called the
Rotation Transformer Network (RTN). In [2], the
authors tested the model only on rotation invariance.
As this paper focuses on scale-invariant image clas-
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sification, we extend their work by demonstrating
and assessing the application of the RiT layer for
improving scale invariance in CNNs.

2.2 Augmentation methods to encode in-
variance in CNNs

One of the techniques used to improve on scale
invariance that is relevant in this paper is the tech-
nique of augmentation. Various random transfor-
mations are applied on the input data which is
then trained on the CNN. To make CNNs recognise
scaled images is to train the model with multiple
scales. This approach is referred to as scale jitter-
ing [17]. Initial reasons for the application of scale
jittering for training CNN models has been to in-
crease the volume of training samples in the train
dataset in order to reduce overfitting and in some
instances to overcome the problem of class imbal-
ance. In addition, due to the increase in training
samples potentially increases the chances of CNNs
to recognise more scale-variant features, and thus,
learn scale-invariant features.

However, this technique has predominantly
been applied to augmentation of training data. This
is achieved in two ways. One way is to create mul-
tiple instances of the training data prior to model
training (offline data augmentation) such as in the
work of [4, 18, 19]. Another way is to train the mod-
els with additional instances of the training data dur-
ing model training (online data augmentation) such
as in the work of [20, 21].

In general the application of data augmentation
has shown promise in improving classification re-
sults [4]. Though good classification results are ob-
tained using data augmentation, it is seldom prac-
tical particularly when working with large datasets.
This technique also contradicts with how the natural
vision system works which does not need to be ex-
posed to variations of the same scene to learn invari-
ance. Furthermore, explicit and conclusive work
that tests the robustness of data augmentation on in-
variance problems is limited.

2.3 Augmentation of feature maps and fil-
ters

Manipulating feature maps in CNNs has been
studied to some extent. For example, [22] pro-
pose augmentation of feature maps at intermedi-

ate layers of a CNN to regularise the network. In
their work, the authors created augmentation lay-
ers (AugLayer) that can be dropped after convolu-
tion layers. In AugLayer, contrast and brightness
adjustment augmentation are applied to outputs of
some of the convolution layers of the ResNet ([5])
model trained on CIFAR-10 dataset. The modified
output is used as input to the next convolution layer.
The RiT layer differentiates from this work in three
ways. Firstly, augmentation is applied by rotating
the feature maps while preserving the original map.
Secondly, the augmented feature maps are concate-
nated with the original feature map resulting in an
increase in number of feature maps. Lastly, aug-
mentation of high-level low-resolution feature maps
is proposed instead of at arbitrary levels in the CNN
structure.

In another work, [23] propose performing trans-
formation in the learned feature space instead of in
input space. They argue this technique to be also ef-
fective in unsupervised representational learning in
addition to supervised learning and works for both
static and sequential data. In RiT, each feature map
is treated as an image and rotation transformation
is applied on the entire spatial dimension of the fea-
ture map.

Furthermore, in [24] the Augmented Convolu-
tional Feature Maps (ACFM) approach applies two
feature extractors (a constrained convolutional layer
and a non-linear residual feature extractor) in paral-
lel on input data. The output features from both the
feature extractors are concatenated for subsequent
convolution layers. The authors denote the concate-
nated features as augmented features. In RTN, the
concatenated feature maps are obtained via a direct
transformation on the original feature map.

Rotating convolutional filters instead of feature
maps have been studied in the work of Diego et al.
[25] in which the authors reported encoding rota-
tion invariance in the CNN by rotating filters. Their
work demonstrated having achieved rotation invari-
ance on texture classification. We note here that fil-
ters were only rotated losing the original state of the
filters in the process. In RiT, we rotate feature maps
instead of filters and both the original and rotated
feature maps are preserved.
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input space. They argue this technique to be also ef-
fective in unsupervised representational learning in
addition to supervised learning and works for both
static and sequential data. In RiT, each feature map
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Furthermore, in [24] the Augmented Convolu-
tional Feature Maps (ACFM) approach applies two
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[25] in which the authors reported encoding rota-
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ters were only rotated losing the original state of the
filters in the process. In RiT, we rotate feature maps
instead of filters and both the original and rotated
feature maps are preserved.
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2.4 Transformer based methods to address
scale invariance

An influential piece of work in this domain
by [26] introduced an end-to-end trainable module
called the Spatial Transformer Network (STN) that
spatially transforms feature maps by passing them
through the transformer’s localisation network, grid
generator and sampler in succession. The heart of
the STN is the localisation network that contains
a feedforward network which generates and learns
the parameters of the spatial transformation that
should be applied to the input feature map. This
architecture is reported to learn several invariances
such as translation, scale, rotation and generic warp-
ing. However, the drawback of this technique is that
it limits the number of objects that can be modelled
in a feedforward network. In addition, since STNs
perform a purely spatial transformation, the feature
maps of the transformed image cannot be re-aligned
with its original ([27]). In RiT layer, the simple aug-
mentation technique of rotation is applied. The gen-
erated augmented feature maps can be mapped back
to its original via inverse rotation easily.

2.5 Filter Pyramid based methods

The works of [11, 12] claim that visual process-
ing is hierarchical and that along the hierarchy, re-
ceptive field sizes of the neurons increases. This
structure of the vision system is claimed to build
invariance - first to position and scale and then to
viewport and other transformations. Inspired by
these models the approach of using differently sized
convolutional filters in parallel to capture more con-
text is increasingly being explored by researchers
[28, 29]. Google’s INCEPTION family of mod-
els uses this approach [17, 30, 31]. The design of
the INCEPTION module [17] is based heavily on
the intuition that visual information should be pro-
cessed at various scales and then aggregated so that
subsequent levels can extract abstract features from
different scales. A prominent model using the IN-
CEPTION module is GoogLeNet which won the
ILSVRC in 2014 [17].

Similarly, based on the concept of large kernels
and pyramid based methods, [32] propose a dis-
tributed information integration CNN model called
D-Net by combining local and global features from
images. In D-Net, global features are extracted us-

ing multi-scale filters. The authors argued that by
combining CNN features with global features con-
tributes to improving scale invariance in CNN net-
works. Following the design of D-Net which com-
bines local and global features, [33] proposed an-
other model called Stacked Filter CNN that used
multi-scale filters to first extract global features in
the beginning of a CNN pipeline and then processed
by a benchmark backbone CNN such as the LeNet5
network. Both these approaches use a similar ap-
proach for testing the developed models on scaled
images from the CIFAR-10 and FMNIST datasets.
This paper follows the same approach for testing the
RTN network and results are compared with D-Net
and SFCNN for CIFAR-10 and FMNIST datasets in
Section 5.2.

The advantage of using filter pyramids or multi-
scale filters such as in the INCEPTION module,
D-Net and SFCNN is that it allows the network
to make larger spatial views of the image or fea-
ture maps. This allows the network to draw in
more semantic information and discriminative fea-
tures from the input than the conventional small fil-
ter sizes in standard CNNs. The features obtained
from multi-scale filters aggregated with locally ob-
tained features using smaller filters (via pooling or
upsampling) allows participation of spatial global
features for improving the performance of the net-
work.

Limitations of this approach are that larger filter
sizes mean more parameters for the network to up-
date, and thus, take longer for network to converge.
Further, convolution operations are computationally
expensive; hence, adding further multi-scale filter
units slows network training and puts strain on the
computing environment. These problems are fur-
ther compounded by the lack of standards that gov-
ern appropriate initialisation of network weight pa-
rameters and the training parameters.

3 RTN Model

The design of RiT layer proposed in [2] is in-
spired by the work of [1] that provides an in-depth
analysis on the internal architecture of the visual
system. Their studies suggest that invariance is
learnt automatically within the vision system rather
than it being exposed to variations of the same im-
age. The end-to-end model consisting of convolu-
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Figure 2. Architecture of RTN (adopted from [2]). The network comprises of (A) standard convolution,
ReLU and maxpooling layers, (B) RiT layer, (C) flatten layer and (D) fully connected classifier layer.
Features extracted through sequence of convolution layers (a) are fed to RiT layer and rotated using

predefined rotation parameters which in this case, are 90◦ clockwise (b) & 90◦ anti-clockwise (c). The
input features (a) and the rotated features (b) and (c) are stacked and returned as output. These are then

reshaped into a vector form by the flatten layer (C) and forwarded to the classifier for learning (D).

tion layers and RiT layer is referred to as Rotation
Transformer Network (RTN). The RiT layer and
RTN architecture are described in [2], however, we
describe the main components and processes in this
section. RTN comprises four main parts as shown
and described in Figure 2.

3.1 Rotation Invariance Transformer
(RiT) layer

The RiT layer forms an integral part of the RTN
model. This layer does not require any trainable
parameters and its main operations are to apply ro-
tation transformations to the input feature maps and
stack them for forward passing. In addition to the
input feature maps, the RiT layer accepts a list of
rotation transformation parameters to apply to the
input feature maps. These parameters are set at
compile time of the model. In this work, two rota-
tions are specified from the list rot list = [90◦,270◦]
where 90◦ is a clockwise rotation and 270◦ repre-
sents 90◦ anti-clockwise rotation. The motivation
behind choosing these rotation parameters to be in
multiples of 90◦ is to allow a full rotation without
losing any parts of a feature map that would other-
wise be truncated from the edges. Since there are no
parameters to be learnt within RiT layer, it executes
fast and does not add significant computation time
to the network. However, given that the RiT layer
makes copies of the input feature maps increases the
output depth dimension of the layer multiplied by a
factor of n which is equal to the number of trans-

formation supplied in rot list. This increases the in-
put dimension for the feedforward classifier but the
number of parameters in the hidden layer remains
unchanged. Hence, the reason the operation of ro-
tation of 180◦ is left out at this stage is to keep the
output depth of feature map to be within the process-
ing capabilities of the available hardware. To have
increased the depth of the feature four-fold would
drastically increase the parameters in the fully con-
nected layers of the classifier.

The process of RiT layer can be described math-
ematically as follows:

Cl = Il−1 ⊕ Ti(Il−1) ⊕ Ti+1(Il−1) i ∈ θ (1)

where l is the current RiT layer, ll−1 is the input
matrix (feature map) of the previous layer of dimen-
sions d-depth, h-height, w-width, Ti defines a rota-
tion transformation, ⊕ represents feature map con-
catenation in d dimension and Cl is the output fea-
ture map of size ((3 ∗ d)× h×w). T is a list of θ
rotation parameters in degrees given by:

θ =

[
θ1 = 90◦

θ2 = 270◦

]
(2)

The main objective of the RiT layer is to provide
feature map augmentation via rotation transforma-
tion. Rotation as an augmentation technique is se-
lected on these feature maps over other forms of
techniques such as translations and scaling due to
the following reasons:
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Figure 2. Architecture of RTN (adopted from [2]). The network comprises of (A) standard convolution,
ReLU and maxpooling layers, (B) RiT layer, (C) flatten layer and (D) fully connected classifier layer.
Features extracted through sequence of convolution layers (a) are fed to RiT layer and rotated using

predefined rotation parameters which in this case, are 90◦ clockwise (b) & 90◦ anti-clockwise (c). The
input features (a) and the rotated features (b) and (c) are stacked and returned as output. These are then

reshaped into a vector form by the flatten layer (C) and forwarded to the classifier for learning (D).
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and described in Figure 2.
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model. This layer does not require any trainable
parameters and its main operations are to apply ro-
tation transformations to the input feature maps and
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input feature maps, the RiT layer accepts a list of
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input feature maps. These parameters are set at
compile time of the model. In this work, two rota-
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where 90◦ is a clockwise rotation and 270◦ repre-
sents 90◦ anti-clockwise rotation. The motivation
behind choosing these rotation parameters to be in
multiples of 90◦ is to allow a full rotation without
losing any parts of a feature map that would other-
wise be truncated from the edges. Since there are no
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fast and does not add significant computation time
to the network. However, given that the RiT layer
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output depth dimension of the layer multiplied by a
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tation of 180◦ is left out at this stage is to keep the
output depth of feature map to be within the process-
ing capabilities of the available hardware. To have
increased the depth of the feature four-fold would
drastically increase the parameters in the fully con-
nected layers of the classifier.

The process of RiT layer can be described math-
ematically as follows:

Cl = Il−1 ⊕ Ti(Il−1) ⊕ Ti+1(Il−1) i ∈ θ (1)

where l is the current RiT layer, ll−1 is the input
matrix (feature map) of the previous layer of dimen-
sions d-depth, h-height, w-width, Ti defines a rota-
tion transformation, ⊕ represents feature map con-
catenation in d dimension and Cl is the output fea-
ture map of size ((3 ∗ d)× h×w). T is a list of θ
rotation parameters in degrees given by:

θ =

[
θ1 = 90◦

θ2 = 270◦

]
(2)

The main objective of the RiT layer is to provide
feature map augmentation via rotation transforma-
tion. Rotation as an augmentation technique is se-
lected on these feature maps over other forms of
techniques such as translations and scaling due to
the following reasons:
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(a) Rotations of 90◦ and 270◦ preserves all the fea-
tures of the feature maps without loss of any in-
formation.

(b) Translation of these feature maps is not recom-
mended as this will cause loss of critical infor-
mation due to truncation.

(c) The spatial dimension of the final feature maps
limit scaling.

3.1.1 Forward propagation

The goal of RiT layer is to create variations of
the feature maps from the final convolution layer for
learning by the classifier. To achieve the forward
pass function, the RiT layer first accepts a set of in-
put feature maps. The incoming input feature maps
are retained while copies of it are rotated according
to the rotation parameters supplied (Figure 2 (a), (b)
and (c)). The input feature maps plus rotated feature
maps are then concatenated to form the final output
map for the next layer (Figure 2 (d)). This stacked
output is returned as augmented feature maps exit-
ing the RiT layer.

3.1.2 Backward propagation

There are no trainable parameters in RiT layer.
This makes the implementation of the backward
function simple and straight forward. The backward
function receives gradients from the network and
unstacks or slices the gradients in the exact same
dimensions of the input feature maps it received dur-
ing the forward pass. It finally returns the gradient
slice corresponding to the input feature map which
is then backpropagated to the previous layers.

Table 1 summarises the details of the datasets.

3.2 Descriptions of other layers in RTN

(A) Feature Extraction Layer:

The convolutional network of RTN is built with
the standard convolution, ReLU and maxpooling
layers. For this work, feature formation layers of
LeNet5, VGG-16 and ResNet-18 network are used.
The primary role of the convolutional network is to
extract features using convolution by small filters.
Having extracted local features through earlier con-
volution layers, the model finally outputs global fea-
tures with the help of network’s deeper convolution

layers. It is these global features that become the
main input for the RiT layer.

(C) Flatten layer:

The role of the flatten layer is unchanged from
standard convolutional models. This layer operates
on the incoming 2D feature maps and reshapes to
form a single dimension feature vector.

(D) Fully Connected layer:

Here, a fully connected neural network (NN) is
used. In this work, the architecture of the NN is
same as those defined in the LeNet5, VGG-16 and
ResNet-18 models respectively. The learning of ro-
tated features are highly dependent on the structure
of this NN; hence, the design of this layer is impor-
tant with respect to the number of hidden layers and
neurons in those hidden layers. It is suggested by
[34] that two hidden layers are capable of represent-
ing functions with any kind of shape and that the
optimal size of the hidden layer is recommended to
be between the size of its input data and size of its
output. LeNet5 and VGG-16 satisfy the later crite-
ria.

4 The Experiments

This section a) summarises the materials used
in this paper that include the benchmark datasets
and CNN structures, b) describes the RTN compo-
nent architectures and selected hyper-parameters, c)
describes the training process for RTN, and d) pro-
vides a summary of the process to prepare scaled
images for testing.

4.1 Materials

4.1.1 Dataset descriptions

RTN is tested on both color and greyscale im-
ages. For this, CIFAR-10, FMNIST, Tiny ImageNet
and ImageHoof benchmark datasets are selected to
train and test benchmark CNNs and RTNs on scaled
images. The datasets contain images of different
sizes and are categorised into small scale, medium
scale and large-scale datasets. Training and testing
RTN on these datasets helped evaluate:
(i) whether the network behaviour in terms of test

performance is consistent when trained on differ-
ent image resolutions compared to benchmark
CNNs, and
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Table 1. Details of datasets used in this paper.
Datasets

CIFAR-10 FMNIST Tiny ImageNet ImageHoof
Category small-scale small-scale medium-scale large-scale

Type RGB Color
(3-channel)

Grey-scale
(1-channel)

RGB Color
(3-channel)

RGB Color
(3-channel)

Classes 10 10 200 10
Train samples 50000 60000 100000 10800
Tests samples 10000 10000 10000 2700
Samples per train class 5000 6000 500 1080
Samples per test class 1000 1000 50 270
Image resolution 32x×32 28×28 64×64 224×224

(ii) whether the network behaviour in terms of test
performance on scaled images sourced from
each dataset is consistent compared to bench-
mark CNNs.

4.1.2 Benchmark CNN architectures

For benchmarking and feature extractor part of
RTN - LeNet5, VGG-16 and ResNet-18 CNNs are
used as described below:

LeNet5:

Proposed by [3], the LeNet5 network used in
this work, comprises of three sets of convolution
layers and two maxpooling layers. The network
is trained on CIFAR-10 and FMNIST datasets due
to a) the relatively small sizes of the images which
are 32× 32 and 28× 28 pixels respectively, and b)
the feasibility of using LeNet5 on small sized image
datasets as shown in research such as [35].

VGG-16:

Proposed by [4], the VGG-16 network used in
this work, comprises of five blocks of convolution
and maxpooling layers for the feature extractor part
of the network. Attached to the feature extractor
is the classifier block consisting of three fully con-
nected layers. Hence, there are a total of 16 weight
layers comprising of 13 convolution and 3 fully
connected layers (configuration D of the VGG net-
work).

ResNet-18:

To overcome the vanishing gradient problem in
large networks He et al. [5] proposed the Resid-
ual Network (ResNet) CNN architecture. The main
building blocks of a ResNet CNN called the Resid-
ual Block are used to create multiple layers that are
initially not used, and skips them, reusing activa-

tion functions from previous layers, thus allowing
’skip connections’ in the network. Several variants
of ResNet CNN have emerged depending on the
number of layers of convolutional layers, however
for the purpose of this research we have used the
ResNet-18 architecture that contains an initial con-
volutional layer followed by 4 residual blocks com-
prising of 4 convolutional layers and a fully con-
nected layer.

The architecture is of the LeNet5, VGG-16 and
ResNet-18 is illustrated in Figure 3.

4.2 RTN components and hyper-
parameter settings

In the experiments, RiT layer is placed at the
tail end of the feature extraction pipeline and before
the classification layer (Figure 2). The location of
the RiT layer to be at the end of all convolution and
maxpooling layers is to allow final extracted fea-
tures to be fed into the RiT layer for transformation
prior to being sent to the classification layer. Fig-
ure 3 shows the placement of RiT layer in RTN us-
ing VGG-16, LeNet5 and ResNet-18 CNNs as back-
bone.

There is only one hyper-parameter for RiT layer.
This is a list of rotation degrees to apply to the input
feature maps. In the initial experiments, this is set to
[90◦,270◦]. Furthermore, for RiT layer to be effec-
tive, the input feature maps must satisfy the criteria
where its dimensions ( fw, fh) should be > 1. This
is to ensure rotation of these feature maps is possi-
ble in the RiT layer. Table 2 shows the input feature
map sizes in the RiT layer from the respective back-
bone CNNs trained on the different datasets and the
corresponding output feature map sizes.
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to a) the relatively small sizes of the images which
are 32× 32 and 28× 28 pixels respectively, and b)
the feasibility of using LeNet5 on small sized image
datasets as shown in research such as [35].
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this work, comprises of five blocks of convolution
and maxpooling layers for the feature extractor part
of the network. Attached to the feature extractor
is the classifier block consisting of three fully con-
nected layers. Hence, there are a total of 16 weight
layers comprising of 13 convolution and 3 fully
connected layers (configuration D of the VGG net-
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ResNet-18:

To overcome the vanishing gradient problem in
large networks He et al. [5] proposed the Resid-
ual Network (ResNet) CNN architecture. The main
building blocks of a ResNet CNN called the Resid-
ual Block are used to create multiple layers that are
initially not used, and skips them, reusing activa-

tion functions from previous layers, thus allowing
’skip connections’ in the network. Several variants
of ResNet CNN have emerged depending on the
number of layers of convolutional layers, however
for the purpose of this research we have used the
ResNet-18 architecture that contains an initial con-
volutional layer followed by 4 residual blocks com-
prising of 4 convolutional layers and a fully con-
nected layer.

The architecture is of the LeNet5, VGG-16 and
ResNet-18 is illustrated in Figure 3.

4.2 RTN components and hyper-
parameter settings

In the experiments, RiT layer is placed at the
tail end of the feature extraction pipeline and before
the classification layer (Figure 2). The location of
the RiT layer to be at the end of all convolution and
maxpooling layers is to allow final extracted fea-
tures to be fed into the RiT layer for transformation
prior to being sent to the classification layer. Fig-
ure 3 shows the placement of RiT layer in RTN us-
ing VGG-16, LeNet5 and ResNet-18 CNNs as back-
bone.

There is only one hyper-parameter for RiT layer.
This is a list of rotation degrees to apply to the input
feature maps. In the initial experiments, this is set to
[90◦,270◦]. Furthermore, for RiT layer to be effec-
tive, the input feature maps must satisfy the criteria
where its dimensions ( fw, fh) should be > 1. This
is to ensure rotation of these feature maps is possi-
ble in the RiT layer. Table 2 shows the input feature
map sizes in the RiT layer from the respective back-
bone CNNs trained on the different datasets and the
corresponding output feature map sizes.
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Table 2. Input and output of the RiT layer when embedded in the LeNet5, VGG-16 and ResNet-18
backbone CNNs as illustrated in Figure 3. Column (e) shows the increase in parameter space in the first

layer of the classifier (fc1). Only the first layer in the classifier is affected. Column (f) shows the increase in
total network parameters as a result of inclusion of the RiT layer.

(a)
Backbone CNN

(b)
Dataset

(c)
Input feature map

(d ×h×w)

(d)
Output feature map

((3×d)×h×w)

(e)
Shape of fc1 in classifier

(before) → (after)

(f)
Total parameters in network

(before) → (after)
LeNet5 CIFAR-10 120×2×2 360×2×2 (480, 84) → (1440, 84) (92246) → (172886)
LeNet5 FMNIST 120×2×2 360×2×2 (480, 84) → (1440, 84) (91946) → (172586)
VGG-16 Tiny ImageNet 512×2×2 1536×2×2 (2048, 4096) → (6144, 4096) (40708104) → (57485320)
VGG-16 ImageHoof 512×7×7 1536×7×7 (25088, 4096) → (75264, 4096) (134301514) → (339822410)
Res-18 Tiny ImageNet 512×2×2 1536×2×2 (512, 200) → (1536, 200) (11279112) → (11483912)
Res-18 ImageHoof 512×7×7 1536×2×2 (512, 10) → (1536, 10) (11181642) → (11191882)

Figure 3. Placement of RiT layer in RTN using LeNet5, VGG-16 and ResNet-18 networks. The RiT layer
is placed after the final feature extractor layers - denoted as (A) RTN-L-conf1 (RTN-LeNet5-configuration

1), (B) RTN-V-conf1 (RTN-VGG-16-configuration 1) and (C) RTN-R-conf1
(RTN-ResNet-18-configuration 1) respectively. RTN-L-conf1 is trained on CIFAR-10 and FMNIST

datasets, while RTN-V-conf1 and RTN-R-conf1 is trained on Tiny ImageNet and ImageHoof datasets.
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Table 3. Details of model training parameters, development and execution platform (reproduced from
[36]). Benchmark CNNs and RTNs use the same parameters.

Dataset
CIFAR-10 FMNIST Tiny ImageNet ImageHoof Tiny ImageNet ImageHoof

Backbone CNN LeNet5 LeNet5 VGG-16 VGG-16 ResNet-18 ResNet-18
CNN activation function relu relu relu relu relu relu
FC activation function sigmoid sigmoid relu relu relu relu
Classification softmax softmax - - - -
Transfer learning no no yes yes yes yes
Training epochs 100 100 50 20 50 20

Learning rate
0.1 - epochs 1-2

0.01 - epochs 3-50
0.001 - epochs 51-100

0.0001
(epochs 1-50)

0.0001
(epochs 1-20)

0.0001
(epochs 1-50)

0.0001
(epochs 1-20)

Momentum 0.9
Weight decay 0.0001
Optimiser Stochastic gradient decent
Loss function Cross-entropy
Train batch size 4
Test batch size 1
DL library Pytorch v1.2.0

Hardware
Dell Precision T7910 64GB RAM

Nvidia Geforce Titan X 12 GB GPU

Table 4. Sample sizes and number of images in each scale category (reproduced from [36], while the
original technique of scaling is adopted from [32, 37] and extended to Tiny ImageNet and ImageHoof

datasets).

Dataset classes
(n)

sample
size
(x)

Scale Categories
(images per class, per scale)

(si = n∗ x)

ense-
mble

150
s1

140
s2

120
s3

100
s4

80
s5

60
s6

50
s7

7
∑

i=1
si

CIFAR-10 10 100 1000 1000 1000 1000 1000 1000 1000 7000
FMNIST 10 100 1000 1000 1000 1000 1000 1000 1000 7000
Tiny ImageNet 200 20 4000 4000 4000 4000 4000 4000 4000 28000
ImageHoof 10 50 500 500 500 500 500 500 500 3500

Table 5. Reference names for the trained RTN models in this paper.

RTN model reference name Backbone CNN Dataset
RTN-L-conf1-Ci LeNet5 CIFAR-10
RTN-L-conf1-Fm LeNet5 FMNIST
RTN-V-conf1-Ti VGG-16 Tiny ImageNet
RTN-V-conf1-Im VGG-16 ImageHoof
RTN-R-conf1-Ti Res-18 Tiny ImageNet
RTN-R-conf1-Im Res-18 ImageHoof
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4.3 Methodology

4.3.1 Training process

End-to-end training is performed for all RTN
models based on LeNet5, VGG-16 and ResNet-18
backbone networks. The training parameters are
summarised in Table 3 and are adopted from [36].
They are the same parameters that were used to
train the benchmark CNNs on CIFAR-10, FMNIST,
Tiny ImageNet and ImageHoof datasets to establish
benchmark results against which the RTN results
are compared with in Section 5 of this paper.

4.3.2 Scaled images for testing RTN

Scaled images are prepared from the test set of
each dataset for testing respective RTNs. For this
purpose, the technique described in [32] and [37],
is used where for each dataset a random sample of
images is scale transformed in 7 different scale cat-
egories, namely [150, 140, 120, 100, 80, 60, 50].
Each category value maps to a scale factor. For ex-
ample 150 refers to an image scaled-up by a factor
of 1.5, 50 refers to an image scaled-down by a fac-
tor of 0.5 and 100 refers to no scaling (is the orig-
inal image). Each specific scale category therefore
contains images enlarged or reduced of a specific
size from the original. The images are scaled using
the antialiasing technique [38]. In addition to test-
ing on individual scale categories, RTN is tested on
all scaled images combined in a special dataset re-
ferred to as the ensemble dataset. This is done to
determine the average performance on all scale cat-
egory images combined. Table 4 shows the details
of scaled images generated for testing RTN. Table
6 shows an example of an image from each dataset
and its scaled versions. Due to using RGB values
[0,0,0] for padding the borders around images that
are scaled down, the scaled dataset is referred to as
Black Border dataset.

Following this process, six trained RTN mod-
els are generated comprising of two RTN-L-conf1
networks trained on CIFAR-10 and FMNIST, two
RTN-V-conf1 networks trained on Tiny ImageNet
and ImageHoof datasets, and two RTN-R-conf1 net-
works trained on Tiny ImageNet and ImageHoof
datasets. The names of these models are shown in
Table 5. These names are used as reference in this
paper.

5 Results and Discussion

Following the methods described in Section 4,
the various RTNs developed for specific datasets are
tested on their effectiveness in classifying scaled im-
ages. Here, the results are discussed in two specific
areas, namely

– Effect of feature map augmentation on train and
test statistics,

– Performance of RTN on scaled images.

First, the trained RTN models are compared
with benchmark CNNs on model convergence by
evaluating the training statistics such as loss and test
accuracy. Second, the trained RTN models are rig-
orously tested on classification of scaled images in
various aspects. In this work, the accuracy metric is
used for evaluations and comparisons.

5.1 Effect of feature map augmentation on
train and test statistics

A common approach to make CNNs generalise
better and reduce overfitting is to apply data aug-
mentation. In this paper, the augmentation of fea-
ture maps approach is applied instead. Whilst data
augmentation causes an increase in number of in-
put samples with no change in internal model archi-
tecture, this approach forces an increase in feature
maps by a factor of 3 due to the applied transfor-
mations. Given the increase in feature maps, the
convergence of the RTN models are investigated
by analysing and comparing the RTN train and test
statistics with the train and test statistics of standard
benchmark CNNs trained on the same datasets.

Table 7 compares the train and test statistics (ac-
curacy and loss) for all the networks. The results
are for RTN-L-conf1, RTN-V-conf1 and RTN-R-
conf1 networks using LeNet5 (L), VGG-16 (V) and
ResNet-18 (R) backbone CNNs respectively (see
Figure 3). The RTN-L-conf1 network is trained
on CIFAR-10 and FMNIST datasets, while RTN-
V-conf1 and RTN-R-conf1 networks are trained on
Tiny ImageNet and ImageHoof datasets. These
statistics are evaluations on the raw train and test
images without any form of scale jittering. As can
be seen, the RTN results are not only comparable,
but have significantly performed better compared to



62 Dinesh Kumar, Dharmendra Sharma

Table 6. Black-Border dataset. An example of scaled image from CIFAR-10, FMNIST, Tiny ImageNet and
ImageHoof datasets (reproduced from [36]).

Dataset Examples

CIFAR-10

FMNIST

Tiny ImageNet

ImageHoof

Table 7. Train and test statistics of RTN (L-conf1, V-conf1 and R-conf1) and benchmark CNNs.

Model train acc train loss test acc difference
(loss)

difference
(test acc)

CIFAR-10
LeNet5-Ci 0.737 1.734 0.568
RTN-L-conf1-Ci 0.856 1.623 0.638 -0.111 +7.0%

FMNIST
LeNet5-Fm 0.934 1.535 0.899
RTN-L-conf1-Fm 0.962 1.505 0.910 -0.030 +1.1%

Tiny ImageNet
VGG-16-Ti 0.995 0.018 0.576
RTN-V-conf1-Ti 0.995 0.018 0.587 0.000 +1.1%

ImageHoof
VGG-16-Im 0.994 0.022 0.898
RTN-V-conf1-Im 0.999 0.004 0.905 -0.018 +0.7%

Tiny ImageNet
ResNet-18-Ti 0.961 0.144 0.449
RTN-R-conf1-Ti 0.938 0.211 0.466 +0.067 +1.7%

ImageHoof
ResNet-18-Im 0.982 0.066 0.902
RTN-R-conf1-Im 0.960 0.134 0.915 +0.068 +1.3%
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the standard CNN results on all datasets - color and
greyscale (indicated in bold).

Significant results are obtained on small and
medium scale datasets (FMNIST, CIFAR-10 and
Tiny ImageNet) than on large-scale ImageHoof
datasets indicated by the higher differences in test
accuracy compared to the benchmark CNNs. How-
ever, this is coupled with an indication of declin-
ing test accuracy from small to large scale images
trained on RTN (from 7.0% on CIFAR-10 dataset
to 0.7% on ImageHoof dataset). One of the fac-
tors that the approach of feature map augmentation
depends on is the output size of the feature extrac-
tor of the backbone CNNs. For example, in the
experiments, the spatial dimensions (h×w) of fea-
ture maps that are augmented for CIFAR-10 and
FMNIST datasets are (2 × 2) while for ImageNet
dataset it is (7× 7). A bigger spatial dimension re-
sults in a higher input space for the classifier. This
means the architecture of the classifiers need to be
optimised to handle this increase in input. In the ex-
periments the classifiers are unchanged and have the
same architecture as they are in the standard CNNs.

Furthermore, RTN models are trained using the
same training parameters as the standard CNNs and
using the same number of training cycles. The re-
sults indicate the stability of the RTN during train-
ing despite the increase in feature maps for the clas-
sifier to process. Whilst the architecture of the fea-
ture extractor part of RTN remained unchanged, the
increase in inputs to the classifier in the form of
augmented feature maps fuelled the classifier with
more data to process, thus minimising overfitting in
the classifier layer and influencing better weight up-
dates for the entire model.

The main conclusion derived from these results
is that feature map augmentation in network train-
ing is useful in improving the classification of ac-
curacy of the models, noting the augmentation of
feature maps happens at the end of the feature ex-
tractor in CNNs.

5.2 Performance of RTN on scaled images

Finally, the consistency and performance of the
RTN models on scaled images is evaluated. For this,
improvements in individual scale category predic-
tion accuracies and evaluations on the consistency
of the results with results from benchmark models

are investigated. The results of RTN and benchmark
models on different scale categories on different
datasets are outlined in Table 8. The accuracy met-
ric is used to evaluate the test accuracy of the mod-
els from each scale category as well as on all com-
bined scaled images in the ensemble dataset. The
scores are highlighted bold in instances where the
accuracy of RTN is higher than benchmark CNN for
a scale category. The column hit rate is a count of
scale categories the RTN model outperformed the
benchmark CNN model for each dataset. In order
to show promise in classification of scaled images,
RTN is anticipated to perform better than bench-
mark models on as many scale categories as pos-
sible. Hence, a minimum threshold of 50% for hit
rate is established. This means RTN should at least
perform better on 50% of the scale categories over
benchmark models on each dataset.

Compared with the benchmark CNNs, the per-
formance of RTN on scaled images is analysed in
three categories:

(i) Generalisation on multi-resolution datasets,

(ii) Performance on enlarged and reduced image
scales, and

(iii) Evaluations on color and greyscale images.

(i) Generalisation on multi-resolution datasets:

In order to determine whether RTN perfor-
mance is similar on scaled images from all datasets,
the accuracy on all scale categories and on the en-
semble dataset is evaluated. The hit rates of RTN on
all datasets are > 50% indicating higher accuracy
on majority of the scale categories than the bench-
mark CNNs. Furthermore, RTN outperformed the
benchmark models on the ensemble dataset, with a
difference of 5.6%, 1.7%, 0.6%, 1.7%, 1.0% and
1.9% on CIFAR-10, FMNIST, Tiny ImageNet and
ImageHoof datasets trained on LeNet5, VGG-16
and ResNet-18 backbone CNNS respectively. This
accounts for 392, 119, 168, 60, 280, and 67 more
scaled images classified correctly from the ensem-
ble dataset respectively. The difference in accuracy
(in percentages) of RTNs and benchmark CNNs is
shown in Table 8.

On the basis of classification accuracy results
over various scale categories and the ensemble
dataset, a promising performance of RTN on most
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Table 8. Performance summarisation (accuracy) of RTN (L-conf1, V-conf1 and R-conf1) and benchmark
CNNs on all the scale categories. The difference in accuracy between RTN and benchmark CNNs are

shown as percentages in brackets. A positive figure indicates higher accuracy of RTN over the benchmark
CNN on the respective scale category.

scale categories (scale size in (%))

Model met-
ric

ense-
ble 150 140 120 100 80 60 50 hit

rate
CIFAR-10

LeNet5-Ci
acc

0.381 0.449 0.478 0.531 0.577 0.265 0.217 0.149

RTN-L-conf1-Ci
0.437

(+5.6%)
0.491

(+4.2%)
0.542

(+6.4%)
0.610

(+7.9%)
0.631

(+5.4%)
0.396

(+13.1%)
0.185

(-3.2%)
0.206

(+5.7%)
0.857
(6/7)

FMNIST
LeNet5-Fm

acc
0.611 0.575 0.654 0.785 0.895 0.703 0.373 0.295

RTN-L-conf1-Fm
0.628

(+1.7%)
0.579

(+0.4%)
0.641

(-1.3%)
0.788

(+0.3%)
0.915

(+2.0%)
0.705

(+0.2%)
0.423

(+5.0%)
0.348

(+5.3%)
0.857
(6/7)

Tiny ImageNet
VGG-16-Ti

acc
0.351 0.398 0.450 0.534 0.580 0.307 0.114 0.055

RTN-V-conf1-Ti
0.357

(+0.6%)
0.402

(+0.4%)
0.464

(+1.4%)
0.550

(+1.6%)
0.594

(+1.4%)
0.318

(+1.1%)
0.114

(0.0%)
0.058

(+0.3%)
0.857
(6/7)

ImageHoof
VGG-16-Im

acc
0.856 0.852 0.858 0.892 0.894 0.888 0.840 0.760

RTN-V-conf1-Im
0.873

(+1.7%)
0.878

(+2.6%)
0.896

(+3.8%)
0.916

(+2.4%)
0.916

(+2.2%)
0.902

(+1.4%)
0.830

(-1.0%)
0.790

(+3.0%)
0.857
(6/7)

Tiny ImageNet
ResNet-18-Ti

acc
0.262 0.285 0.342 0.426 0.454 0.225 0.062 0.042

RTN-R-conf1-Ti
0.272

(+1.0%)
0.321

(+3.6%)
0.367

(+2.5%)
0.427

(+0.1%)
0.463

(+0.9%)
0.217

(-0.8%)
0.069

(+0.7%)
0.042

(0.0%)
0.714
(5/7)

ImageHoof
ResNet-18-Im

acc
0.844 0.848 0.892 0.888 0.906 0.864 0.796 0.712

RTN-R-conf1-Im
0.863

(+1.9%)
0.894

(+4.6%)
0.890

(-0.2%)
0.922

(+3.4%)
0.920

(+1.4%)
0.874

(+1.0%)
0.798

(+0.2%)
0.744

(+3.2%)
0.857
(6/7)
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Table 8. Performance summarisation (accuracy) of RTN (L-conf1, V-conf1 and R-conf1) and benchmark
CNNs on all the scale categories. The difference in accuracy between RTN and benchmark CNNs are

shown as percentages in brackets. A positive figure indicates higher accuracy of RTN over the benchmark
CNN on the respective scale category.
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scale categories compared to the respective bench-
mark LeNet5, VGG-16 and ResNet-18 networks is
confirmed.

(ii) Performance on enlarged and reduced image
scales:

In this category, the performance of RTN is
compared with benchmark CNNs on both upscaled
and downscaled scale categories. RTN performance
is observed to be higher on all scaled up color im-
ages (categories 150,140,120) than on greyscale
images (except on scale category 140 by the RTN
network using the ResNet-18 backbone trained on
ImageHoof dataset). Here, average accuracy on up-
scaled scale categories are 6.2%, 1.1%, 2.9%, 2.1%
and 2.6% for CIFAR-10, Tiny ImageNet and Im-
ageHoof datasets trained on LeNet5, VGG-16 and
ResNet-18 backbone CNNS respectively, whereas
average accuracy on FMNIST dataset is -0.2%.

There is promising performance of RTN
over benchmark models when comparing accu-
racy scores on scaled down images (categories
80,60,50). Considering LeNet5 and VGG-16 based
RTN networks tested on color images (CIFAR10,
Tiny ImageNet and ImageHoof datasets), perfor-
mance is not the same as on scaled up images,
where hit-rate is only noted to be better on at least
2 out of 3 downscaled scale categories. Here, a pos-
itive average accuracy of 5.2%, 0.5% and 1.1% is
obtained on downscaled scale categories on CIFAR-
10, Tiny Image and ImageHoof datasets respec-
tively. However, the results of ResNet-18 based
RTN networks tested on ImageHoof scaled color
images indicate better performance on all down-
scaled scale categories. This indicates that while
the results are generally promising on scaled up im-
ages, the performance of RTN networks may differ
on scaled down images if built on top of different
backbone CNNs.

Further, a higher average accuracy of RTN is
noted on scaled down FMNIST images than on
scaled up images and vice versa on color datasets.
A probable explanation provided is that the padding
of RGB [0,0,0] values around scaled color images
further confuses the models into miss-classifying
the images to its correct class, as the pixels are
outside the normal color distribution of the dataset.
On the other hand, the padded pixel values around
greyscale scaled down images fall within the nor-

mal greyscale color distribution of the dataset, thus
showing a different effect. From these results two
conclusions are drawn:

1. The process of upscaling has enhanced some the
features and that enough detail remains in the
scaled up images for RTN to process, causing
results to be better than on scaled down images.

2. The backbone CNN on which RTN networks are
built has an influence on the overall performance
of the network on scaled up and downscaled im-
ages.

3. The presence of noise in the form of RGB val-
ues [0,0,0] padded around scaled down images
further confuses the model, forcing hit rates to
be lower for scaled down images than on scaled
up images particularly on color datasets.

(iii) Evaluations on color and greyscale scaled
images:

In this category, the performance of RTN on
color and greyscale images is studied. Despite the
fact that only a single greyscale dataset is used in
the experiments, some interesting patterns are ob-
served. For example, in-spite of similar image reso-
lution in CIFAR-10 and FMNIST datasets, RTN is
shown to perform better on CIFAR-10 color scaled
images. A similar performance of RTN on scaled
Tiny ImageNet and ImageHoof images is observed.
From these results three conclusions are drawn:

1. CIFAR-10, Tiny ImageNet and ImageHoof all
contain natural images; and, therefore, have
more complex features than the greyscale FM-
NIST dataset. The presence of more discrimina-
tive features allows the models to perform better.

2. The presence of color promotes the diversity of
the object colors such as dogs with different
fur colors. This causes the network to become
slightly tolerant to color invariance ([35]).

3. Despite truncation of images due to upscaling,
the presence of color provides enough details for
the network to extract features from. Greyscale
images lack this advantage.

Table 9 compares the performance of RTN net-
works with D-Net [32] and SFCNN [33] networks
on scaled images. The comparison is possible since
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Table 9. Comparison of RTN (L-conf1) networks with benchmark LeNet5, D-Net [32] and SFCNN [33]
networks. The values for RTN accuracies which are highlighted bold illustrates scale categories on which

performance of RTN is higher than on D-Net and SFCNN networks.

scale categories (scale size in (%))

Model met-
ric

ense-
ble 150 140 120 100 80 60 50 hit rate compared

with LeNet5
CIFAR-10

LeNet5-Ci [32, 33]

acc

0.381 0.449 0.478 0.531 0.577 0.265 0.217 0.149

D-Net-Ci [32] 0.419 0.481 0.532 0.594 0.637 0.277 0.214 0.195
0.857
(6/7)

SFCNN-Ci [33] 0.394 0.438 0.487 0.547 0.586 0.351 0.193 0.159
0.714
(5/7)

RTN-L-conf1-Ci (this paper) 0.437 0.491 0.542 0.610 0.631 0.396 0.185 0.206 0.857
(6/7)

FMNIST
LeNet5-Fm [32, 33]

acc

0.611 0.575 0.654 0.785 0.895 0.703 0.373 0.295

D-Net-Fm [32]) 0.629 0.570 0.685 0.804 0.922 0.712 0.410 0.303
0.857
(6/7)

SFCNN-Fm [33] 0.566 0.480 0.573 0.743 0.880 0.647 0.369 0.267
0.000
(0/7)

RTN-L-conf1-Fm (this paper) 0.624 0.592 0.650 0.791 0.914 0.696 0.421 0.306 0.714
(5/7)

Table 10. Statistical significance of the global accuracy (p2 vs p1) of RTNs with respective benchmark
CNNs models trained on each dataset.

parameters Test on
CIFAR-10

Test on
FMNIST

Test on
Tiny ImageNet

Test on
ImageHoof

Test on
Tiny ImageNet

Test on
ImageHoof

C1 LeNet5-Ci LeNet5-Fm VGG-16-Ti VGG-16-Im ResNet-18-Ti ResNet-18-Im
C2 RTN-L-conf1-Ci RTN-L-conf1-Fm RTN-V-conf1-Ti RTN-V-conf1-Im RTN-R-conf1-Ti RTN-R-conf1-Im
p1 0.568 0.899 0.576 0.898 0.449 0.902
p2 0.638 0.910 0.587 0.905 0.466 0.915
p̂1 0.577 0.895 0.580 0.894 0.454 0.906
p̂2 0.631 0.915 0.594 0.916 0.463 0.920
x1 577 895 2320 447 1816 453
x2 631 915 2376 458 1852 460
n 1000 1000 4000 500 4000 500
p 0.604 0.905 0.587 0.905 0.459 0.913
Z -2.469 -1.525 -1.272 -1.186 -0.808 -0.785

Accepted
hypothesis

H1 H1 H1 H1 H1 H1
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our work uses a similar approach to test scaled im-
ages. Since D-Net and SFCNN are tested on scaled
CIFAR-10 and FMNIST images, we compare their
results with RTN networks on the same datasets. On
CIFAR-10 dataset, RTN accuracies are higher on 6
out of the 7 scale categories compared to accura-
cies on the same scale categories for the LeNet5,
D-Net and SFCNN networks. On FMNIST dataset,
RTN performance is higher on 3 scale categories.
Comparing hit rates, both RTN and D-Net hit rates
are higher than SFCNN. However, multi-scale fil-
ters in the D-Net model makes it a computationally
expensive model whereas no trainable parameters
in the RiT layer in the RTN network makes it a
lightweight model to use for the application of clas-
sifying scaled images.

5.3 Model validation

The statistical significance of the global accu-
racy of RTNs are compared with respective bench-
mark CNNs using the Test of Hypothesis for the
Difference of Two Proportions method ([39]). The
comparison is made for each pair of benchmark
CNN and RTN model trained on each datasets.

A Test for the Difference of Two Proportions:

– Let p1 and p2 be global accuracy of classifiers
C1 and C2 on the training set T . Here, C1 and C2
refer to benchmark CNN and RTN trained on a
dataset.

– Let t be a sample from test set T of size n. Here,
t is the sample corresponding to scale category
[100]. This is because the images in this cate-
gory are not manipulated by scaling; and, there-
fore, share the same distribution as the global
test set of each dataset,

– Let p̂1 and p̂2 be the accuracies obtained from
classifiers C1 and C2 on t respectively.

– Let x1 and x2 be the number of samples correctly
classified from classifiers C1 and C2 on t respec-
tively, such that:
p̂1 =

x1
n , p̂2 =

x2
n

– The test statistic is given by:

Z =
p̂1 − p̂2√

2p(1− p)/n
where p=

(x1 + x2)

2n
(3)

– The goal is to prove p2 of classifier C2 is better
than p1 of classifier C1. Thus, the null hypoth-
esis H0 and alternative hypothesis H1 is formu-
lated as:

H0 : p1 = p2 (no statistically significant differ-
ence between accuracy of C1 and C2)
H1 : p1 ̸= p2 (there is statistically significant
difference between accuracy of C1 and C2)

where the rejection region (RR) is defined by

H1 RR
p1 < p2 Z <−zα (if true p2 of classifier C2 is better

than p1 of classifier C1)
p1 > p2 Z > zα (if true p1 of classifier C1 is better

than p2 of classifier C2)
p1 ̸= p2 |Z| >−zα/2

where zα is obtained from a standard normal dis-
tribution for a given level of significance, α.

– In this work, α = 0.05 for 5% level of signifi-
cance giving z0.05 =−1.645. That is, when rela-
tion Z < 1.645, classifier C2 is accepted as more
accurate than classifier C1 with 95% confidence
level.

Table 10 summaries the Test of Hypothesis for
the Difference of Two Proportions for each CNN
and RTN model on each dataset. In all cases Z <
1.645 is obtained, indicating global accuracy p2 of
RTN models are better than p1 of benchmark CNNs.
Thus, this shows there is statistical significance of
the global accuracies of the developed RTN models
compared with the benchmark CNNs.

5.4 Ablation study

A technique borrowed from the field of neuro-
science, ablation studies in Artificial Neural Net-
work (ANN) examine the performance of a model
or algorithm by removing, altering or swapping
some of its parts or features ([40]). The placement
of RiT layer within RTN is based on two premises:

1. That invariance happens within the ventral
stream which is supported by physiological stud-
ies.

2. That high-level global features in the CNN tend
to be more discriminative for classification task
and appropriate to characterize objects with
complex characteristic.
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Figure 4. Placement of the RiT layer in LeNet5, VGG-16 and ResNet-18 networks in the ablation study.
(A), (B) and (C) demonstrate augmentation of multiple high-level low-resolution feature maps. For this

experiment, two RiT layers are placed after the final two convolution layers. (D), (E) and (F) demonstrate
augmentation of low-level high-resolution feature maps. Here, the RiT layer is placed after the first

convolution layer in LeNet5, VGG-16 and ResNet-18 networks.
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Table 11. Performance summarisation (accuracy) of RTN (configuration 2 and 3) compared with
benchmark CNNs and RTN (configuration 1) on all the scale categories.

scale categories (scale size in (%))

Model met-
ric

ense-
ble 150 140 120 100 80 60 50 hit

rate
CIFAR-10

LeNet5-Ci

acc

0.381 0.449 0.478 0.531 0.577 0.265 0.217 0.149

RTN-L-conf1-Ci 0.437 0.491 0.542 0.610 0.631 0.396 0.185 0.206 0.857
(6/7)

RTN-L-conf2-Ci 0.431 0.476 0.543 0.603 0.647 0.367 0.218 0.160 1.000
(7/7)

RTN-L-conf3-Ci 0.384 0.459 0.495 0.536 0.569 0.347 0.163 0.116
0.571
(4/7)

FMNIST
LeNet5-Fm

acc

0.611 0.575 0.654 0.785 0.895 0.703 0.373 0.295

RTN-L-conf1-Fm 0.628 0.579 0.641 0.788 0.915 0.705 0.423 0.348 0.857
(6/7)

RTN-L-conf2-Fm 0.646 0.601 0.658 0.811 0.916 0.721 0.430 0.387 1.000
(7/7)

RTN-L-conf3-Fm 0.616 0.552 0.622 0.771 0.911 0.692 0.426 0.340 0.429
(3/7)

Tiny ImageNet
VGG-16-Ti

acc

0.351 0.398 0.450 0.534 0.580 0.307 0.114 0.055

RTN-V-conf1-Ti 0.357 0.402 0.464 0.550 0.594 0.318 0.114 0.058 0.857
(6/7)

RTN-V-conf2-Ti 0.352 0.384 0.444 0.527 0.592 0.328 0.121 0.062 0.571
(4/7)

RTN V-conf3 Ti 0.292 0.320 0.363 0.442 0.495 0.272 0.108 0.055
0.000
(0/7)

ImageHoof
VGG-16-Im

acc

0.856 0.852 0.858 0.892 0.894 0.888 0.840 0.760

RTN-V-conf1-Im 0.873 0.878 0.896 0.916 0.916 0.902 0.830 0.790 0.857
(6/7)

RTN-V-conf2-Im 0.861 0.858 0.862 0.896 0.908 0.900 0.842 0.780 1.000
(7/7)

RTN-V-conf3-Im 0.707 0.694 0.728 0.758 0.782 0.758 0.652 0.544
0.000
(0/7)

Tiny ImageNet
ResNet-18-Ti

acc

0.262 0.285 0.342 0.426 0.454 0.225 0.062 0.042

RTN-R-conf1-Ti 0.272 0.321 0.367 0.427 0.463 0.217 0.069 0.042
0.714
(5/7)

RTN-R-conf2-Ti 0.241 0.285 0.318 0.382 0.432 0.172 0.058 0.040
0.000
(0/7)

RTN-R-conf3-Ti 0.137 0.142 0.172 0.239 0.284 0.080 0.022 0.017
0.000
(0/7)

ImageHoof
ResNet-18-Im

acc

0.844 0.848 0.892 0.888 0.906 0.864 0.796 0.712

RTN-R-conf1-Im 0.863 0.894 0.890 0.922 0.920 0.874 0.798 0.744 0.857
(6/7)

RTN-R-conf2-Im 0.756 0.762 0.796 0.820 0.826 0.774 0.712 0.600
0.000
(0/7)

RTN-R-conf3-Im 0.285 0.304 0.330 0.392 0.420 0.236 0.184 0.132
0.000
(0/7)
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Thus, to verify the above premises, ablation
studies are conducted by varying the placement of
the RiT layer within the CNN pipeline. They are
described as follows:

5.4.1 Augmentation of multiple high-level low-
resolution feature maps:

In this experiment, augmentation of feature
maps are extended to other layers in the deeper of
end the CNN pipeline. The aim is to expose the clas-
sifier with several variations of high-level features
and to test whether augmentation of multiple high-
level features maps in the deeper end of the CNN
improves invariance, in particular classification of
scaled images. To verify this, two RiT layers are
inserted after the last two convolution layers in the
LeNet5 and VGG-16 network (see Figure 4 A. and
B.)), whereas in the ResNet-18 network RiT layers
are added after the last two blocks (see Figure 4 C.)).
These new RTN models are trained using the same
training parameters as benchmark CNNs and tested
on scaled images. Comparison is made with the re-
sults of benchmark CNNs on scaled images. RTNs
from this ablation study are named as RTN-L-conf2,
RTN-V-conf2 and RTN-R-conf2 models appended
by the dataset initials.

Table 11 describes the results on scaled images.
Analysing the hit rates, RTN configuration 2 mod-
els shows promising results when configured with
LeNet5 and VGG-16 networks where hit rate is
> 50%. In addition, RTNs trained on CIFAR-10,
FMNIST and ImageHoof have higher accuracies
on all scale categories compared to the benchmark
CNNs (hit rate = 100%). RTN configuration 2 archi-
tecture also produces better results on all FMNIST
dataset scale categories compared with RTN config-
uration 1 models. However, when configured with
ResNet-18 network as backbone, the RTN configu-
ration 2 networks performance is poor when evalu-
ated on Tiny ImageNet and ImageHoof scaled im-
ages. While on one hand the results confirm aug-
mentation of multiple high-level feature maps ap-
plied on LeNet5 and VGG-16 networks using con-
figuration 2 technique is beneficial towards classi-
fication of scaled images and that the benefits are
higher on greyscale scaled images, the RiT layer
placement after intermediate residual blocks in the
ResNet architecture degrades the performance of
the overall network.

Since the RiT layer augments the feature maps
using fixed rotation parameters, adding subsequent
RiT layers adjacent to each other is not required
as this operation will only duplicate the augmented
features from the previous RiT layers.

5.4.2 Augmentation of low-level high-
resolution feature maps:

In this experiment, augmentation of feature
maps in the early stages of the CNN are investi-
gated. As such, the RiT layer is placed after the
first convolution layer of the LeNet5, VGG-16 and
ResNet-18 networks which are then trained using
the same training parameters as benchmark CNNs
(see Figure 4 (D, E and F)). RTNs from this ab-
lation study are named as RTN-L-conf3, RTN-V-
conf3 and RTN-R-conf3 models appended by the
dataset initials. This architecture conflicts with the
premises stated in Section 5.4 that suggest high-
level features are more useful for classification
task and characterize objects with complex shapes.
Therefore, results from this ablation study are ex-
pected to be inferior to RTN configuration 1 and 2
models. Table 11 also shows results of configura-
tion 3 models on scaled images compared with the
benchmark CNNs (LeNet5, VGG-16 and ResNet-
18). As anticipated, the hit rates are lower for RTN
models on CIFAR-10 and FMNIST dataset and
worse on Tiny ImageNet and ImageHoof datasets.

5.5 Performance of RTN on rotated images

Given that features are rotated in the RiT layer
indicates such an operation could directly lead to
promotion of rotation invariance. To answer this
question, an investigation of the application of the
RiT layer with CNNs on rotation invariance is pre-
sented in [2]. In this work, the RiT layer is inserted
in the LeNet5 and modified versions of the VGG
(MVGG) networks as the final layer in the feature
extraction part. Experiments on classification of ro-
tated images demonstrated improved results than us-
ing the CNN models without the RiT layer. The re-
sults presented in [2] and in this paper shows RTN’s
potential in promoting both rotation and scale in-
variance.
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Thus, to verify the above premises, ablation
studies are conducted by varying the placement of
the RiT layer within the CNN pipeline. They are
described as follows:

5.4.1 Augmentation of multiple high-level low-
resolution feature maps:

In this experiment, augmentation of feature
maps are extended to other layers in the deeper of
end the CNN pipeline. The aim is to expose the clas-
sifier with several variations of high-level features
and to test whether augmentation of multiple high-
level features maps in the deeper end of the CNN
improves invariance, in particular classification of
scaled images. To verify this, two RiT layers are
inserted after the last two convolution layers in the
LeNet5 and VGG-16 network (see Figure 4 A. and
B.)), whereas in the ResNet-18 network RiT layers
are added after the last two blocks (see Figure 4 C.)).
These new RTN models are trained using the same
training parameters as benchmark CNNs and tested
on scaled images. Comparison is made with the re-
sults of benchmark CNNs on scaled images. RTNs
from this ablation study are named as RTN-L-conf2,
RTN-V-conf2 and RTN-R-conf2 models appended
by the dataset initials.

Table 11 describes the results on scaled images.
Analysing the hit rates, RTN configuration 2 mod-
els shows promising results when configured with
LeNet5 and VGG-16 networks where hit rate is
> 50%. In addition, RTNs trained on CIFAR-10,
FMNIST and ImageHoof have higher accuracies
on all scale categories compared to the benchmark
CNNs (hit rate = 100%). RTN configuration 2 archi-
tecture also produces better results on all FMNIST
dataset scale categories compared with RTN config-
uration 1 models. However, when configured with
ResNet-18 network as backbone, the RTN configu-
ration 2 networks performance is poor when evalu-
ated on Tiny ImageNet and ImageHoof scaled im-
ages. While on one hand the results confirm aug-
mentation of multiple high-level feature maps ap-
plied on LeNet5 and VGG-16 networks using con-
figuration 2 technique is beneficial towards classi-
fication of scaled images and that the benefits are
higher on greyscale scaled images, the RiT layer
placement after intermediate residual blocks in the
ResNet architecture degrades the performance of
the overall network.

Since the RiT layer augments the feature maps
using fixed rotation parameters, adding subsequent
RiT layers adjacent to each other is not required
as this operation will only duplicate the augmented
features from the previous RiT layers.

5.4.2 Augmentation of low-level high-
resolution feature maps:

In this experiment, augmentation of feature
maps in the early stages of the CNN are investi-
gated. As such, the RiT layer is placed after the
first convolution layer of the LeNet5, VGG-16 and
ResNet-18 networks which are then trained using
the same training parameters as benchmark CNNs
(see Figure 4 (D, E and F)). RTNs from this ab-
lation study are named as RTN-L-conf3, RTN-V-
conf3 and RTN-R-conf3 models appended by the
dataset initials. This architecture conflicts with the
premises stated in Section 5.4 that suggest high-
level features are more useful for classification
task and characterize objects with complex shapes.
Therefore, results from this ablation study are ex-
pected to be inferior to RTN configuration 1 and 2
models. Table 11 also shows results of configura-
tion 3 models on scaled images compared with the
benchmark CNNs (LeNet5, VGG-16 and ResNet-
18). As anticipated, the hit rates are lower for RTN
models on CIFAR-10 and FMNIST dataset and
worse on Tiny ImageNet and ImageHoof datasets.

5.5 Performance of RTN on rotated images

Given that features are rotated in the RiT layer
indicates such an operation could directly lead to
promotion of rotation invariance. To answer this
question, an investigation of the application of the
RiT layer with CNNs on rotation invariance is pre-
sented in [2]. In this work, the RiT layer is inserted
in the LeNet5 and modified versions of the VGG
(MVGG) networks as the final layer in the feature
extraction part. Experiments on classification of ro-
tated images demonstrated improved results than us-
ing the CNN models without the RiT layer. The re-
sults presented in [2] and in this paper shows RTN’s
potential in promoting both rotation and scale in-
variance.
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6 Conclusion

This paper has extended the work presented in
[2] by demonstrating and assessing the application
of the Rotation Invariance Transformer (RiT) layer
for improving scale invariance in CNNs. RiT uti-
lizes the technique of feature map augmentation
within CNN models and can be dropped at the out-
put end of a convolution or maxpooling layer in a
CNN. In this work, a CNN using RiT layers is re-
ferred as a Rotation Transformer Network (RTN).

The design of RiT layer is motivated by a) find-
ings by physiological studies that suggest the mam-
malian visual system encodes invariances to objects
within the ventral stream as visual signals propagate
from the retina to the cortex, and b) the potential
benefits of the application of augmentation of input
data to improve invariant object detection and clas-
sification. Experiments are conducted with the RiT
layer placed at the end of the feature extraction lay-
ers of the CNN due to the knowledge that high-level
features generated within CNNs are more useful for
classification task and appropriate to characterize
objects with complex shapes. These properties are
important for invariant image classification.

In a RTN, the RiT layer takes input feature
maps from convolution or maxpooling layers and
performs augmentation via rotation transformation.
Within the RiT layer, full rotations of 90◦ and 270◦

are performed to prevent truncation of any part of
the feature map and to preserve all the features. The
final output from the RiT layer is then learnt by the
classifier module in the CNN.

RTNs are trained on different datasets and
their performance on classification of scaled images
in seven different scale categories are examined.
The results are compared with benchmark LeNet5,
VGG-16 and ResNet-18 networks on the same task.
The results show RTNs perform better in recog-
nising scaled images in comparison to benchmark
CNNs and demonstrate promising performance of
RTNs on scaled up images than on scaled down im-
ages. Furthermore, results are more promising on
color images than on greyscale images.

The test of hypothesis for the difference of two
proportions is used to validate the significance of
the global accuracy of RTNs compared to CNNs
studied in this paper. The test reveals the global test
accuracy of RTN is statistically significant.

The results of ablation studies conducted show
RiT layers enhance the CNNs ability to handle scale
invariance when used in the deeper end of the CNN
feature extraction pipeline. The study also confirms
exposing the network with more variants of high-
level global features (via augmentation) improves
scale-invariance classification, better than when ex-
posing the network with augmented low-level local
features.

The effect of rotating feature maps in the RiT
layer on rotation invariance is adequately tested and
presented in [2]. Combined with results presented
in this paper indicates RTN’s potential in promoting
both rotation and scale invariance.

There are no trainable parameters in RiT layer,
thus it executes fast and does not add significant
computation time during network training. Fur-
thermore, this method can easily be integrated into
CNN based applications requiring scale invariance
such as in skin lesion classification. However, given
the RiT layer makes copies of the input feature
maps internally increases output volume of the layer
by a factor of three. Though this has the benefits of
extra input to avoid overfitting and improve gener-
alisation, the downside is that it may require more
training time for the network to fine tune its weights.
In addition, when the RiT layer is used as the fi-
nal layer in the feature extraction part of the CNN,
increases the input neurons of the fully connected
layer. This in turn causes an increase in the num-
ber of weights required between the input and hid-
den layer. Furthermore, subsequent classifier layers
may need to be restructured in terms of additional
neurons per layer or additional layers to accommo-
date for the high volume of feature maps from the
RiT layer.

Finally, the results show potential benefits of
RTN when RiT layers are used on high-level feature
maps. The goodness of the augmented feature maps
are dependent on the goodness of the global high-
level features extracted. The high-level features are
in turn dependent on the goodness of the local low-
level features extracted. In this process, the CNN
pipeline begins with local features extracted first,
thus ignoring global spatial relationships amongst
features which may prove useful in improving spa-
tial invariance problem in CNNs.

The sequential implementation of the convolu-
tion and maxpooling layers in LeNet5, VGG-16
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and ResNet-18 networks allowed easy integration
of the RiT layer into those networks. Whilst, im-
provements in classification of scaled images over
these classic CNN architectures are promising, the
following present as exciting future work:

– the integration and evaluation of the RiT layer
within residual blocks of ResNet and against
more advanced CNNs such as DenseNet ([41]);

– test on applications or domains other than im-
age classification such as audio magnitude spec-
trograms where where data is represented in 1D
space;

– expand the ablation study by inserting the RiT
layer after all convolutional layers and perform-
ing a separate training for each RiT position in
order to further validate correlation of RiT place-
ment in the network to the biological human vi-
sion.
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these classic CNN architectures are promising, the
following present as exciting future work:

– the integration and evaluation of the RiT layer
within residual blocks of ResNet and against
more advanced CNNs such as DenseNet ([41]);

– test on applications or domains other than im-
age classification such as audio magnitude spec-
trograms where where data is represented in 1D
space;
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ing a separate training for each RiT position in
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