Identyfikatory
ISBN
10.53584/WIADCHEM.2025.07.1
Warianty tytułu
Sustainable materials for lithium- and sodium-ion batteries
Języki publikacji
Abstrakty
In recent years there has been a growing demand for reliable and affordable energy storage devices to minimize dependence on fossil fuels by integration of intermittentoperating renewable energy sources into the grid. Large-scale deployment places high requirements to the cost, sustainability and recyclability of the materials used in batteries. Sustainable battery materials will play a key role in the energy transition and the development of environmentally friendly technologies. As the demand for energy storage increases - particularly in the electromobility and renewable energy sectors - so does the need to find alternatives to traditional raw materials such as lithium, cobalt and nickel, whose extraction is often associated with negative environmental and social impacts. Sustainable approaches range from the use of more accessible and less toxic materials to the implementation of recycling technologies and the development of closed life-cycle cells. The drive to minimise the carbon footprint and improve supply chain ethics is making research into sustainable materials one of the pillars of modern energy.
Wydawca
Czasopismo
Rocznik
Tom
Strony
435--455
Opis fizyczny
Bibliogr. 72 poz., rys.
Twórcy
- Katedra Konwersji i Magazynowania Energii, Wydział Chemiczny, Politechnika Gdańska, ul. Narutowicza 11/12, 80-233 Gdańsk
Bibliografia
- [1] https://rmis.jrc.ec.europa.eu/rmp/ (dostęp czerwiec 2025)
- [2] S. Passerini, Emerging Battery Technologies to Boost the Clean Energy Transition, Cost, Sustainability, and Performance Analysis, Ed. S. Passerini, L. Barelli, M. Baumann, J. F. Peters, M. Weil, The Materials Research Society Series, Spriner, https://doi.org/10.1007/978-3-031-48359-2
- [3] Helbig C, Huether J, Joachimsthaler C et al (2022) A terminology for downcycling. J Ind Ecol 26:1164–1174. https://doi.org/10.1111/jiec.13289
- [4] Pillot C (2022) The rechargeable battery market and main trends 2011–2020
- [5] Helbig C, Kondo Y, Nakamura S (2022) Simultaneously tracing the fate of seven metals at a global level with MaTrace-multi. J Ind Ecol 26:923–936. https://doi.org/10.1111/jiec.13219
- [6] Eurostat Statistic Explained. Waste statistics - recycling of batteries and accumulators, (n.d.). https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Waste_statistics_-_recycling_of_batteries_and_accumulators&stable=0#Recycling_of_batteries_and_accumulators (dostęp, czerwiec 2025)
- [7] Latini D, Vaccari M, Lagnoni Metal (2022) A comprehensive review and classification of unit operations with assessment of outputs quality in lithium-ion battery recycling. J Power Sources 546:231979. https://doi.org/10.1016/j.jpowsour.2022.231979
- [8] Morse I (2021) A dead battery dilemma. Science 372:780–783. https://doi.org/10.1126/science.372.6544.780
- [9] Mohr M, Peters JF, Baumann M, Weil M (2020) Toward a cell-chemistry specific life cycle assessment of lithium-ion battery recycling processes. J Ind Ecol 24:1310–1322. https://doi.org/10.1111/ji
- [10] Xu C, Dai Q, Gaines L et al (2020) Future material demand for automotive lithium-based batteries. Commun Mater 1:99. https://doi.org/10.1038/s43246-020-00095-x
- [11] IEA (2022) The role of critical minerals in clean energy transitions. International Energy Agency
- [12] Tarascon, J.-M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001)
- [13] Li, M., Lu, J., Chen, Z. & Amine, K. 30 Years of Lithium‐Ion Batteries. Advanced Materials 30, (2018)
- [14] Nitta, N., Wu, F., Lee, J. T. & Yushin, G. Li-ion battery materials: present and future. Materials Today 18, 252–264 (2015)
- [15] N. Williard, W. He, C. Hendricks, M. Pecht, Energies 2013, 6, 4682-4695; doi:10.3390/en6094682
- [16] Georgi-Maschler et al., Journal of Power Sources 207 (2012)
- [17] Babbitt, C. W. Sustainability perspectives on lithium-ion batteries. Clean Technol Environ Policy 22, 1213–1214 (2020).
- [18] Banza Lubaba Nkulu, C. et al. Sustainability of artisanal mining of cobalt in DR Congo. Nat Sustain 1, 495–504 (2018)
- [19] Amnesty International report 2016, “This Is What We Die For”, https://www.amnesty.org/fr/wpcontent/uploads/2021/05/AFR6231832016ENGLISH.pdf
- [20] Turcheniuk, K., Bondarev, D., Singhal, V., Yushin, G. Ten years left to redesign lithium-ion batteries. Nature 559, 467–470 (2018).
- [21] Padhi, A. K., Nanjundaswamy, K. S., Goodenough, J. B. Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries. J Electrochem Soc 144, 1188–1194 (1997).
- [22] Gourley, S. W. D., Or, T. & Chen, Z. Breaking Free from Cobalt Reliance in Lithium-Ion Batteries. iScience 23, 101505 (2020)
- [23] Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nat Commun 11, 1550 (2020).
- [24] IEA, Global EV Outlook 2024 (2024)
- [25] M. Armand, P. Axmann, D. Bresser, M. Copley, K. Edström, C. Ekberg, D. Guyomard, B. Lestriez, P. Novák, M. Petranikova, W. Porcher, S. Trabesinger, M. Wohlfahrt-Mehrens, H. Zhang, Lithiumion batteries – Current state of the art and anticipated developments, J. Power Sources. 479 (2020) 228708. doi:10.1016/j.jpowsour.2020.228708
- [26] https://physicsworld.com/a/lithium-ion-batteries-break-energy-density-record/
- [27] F. M. N. U. Khana, M. G. Rasula, A.S.M. Sayemb, N. Mandala, Maximizing energy density of lithium-ion batteries for electric vehicles: A critical review, Energy Reports 9 (2023) 11–21, https://doi.org/10.1016/j.egyr.2023.08.069
- [28] Xia, X. & Li, P. A review of the life cycle assessment of electric vehicles: Considering the influence
- [29] Dehghani-Sanij, A. R., Tharumalingam, E., Dusseault, M. B. & Fraser, R. Study of energy storage systems and environmental challenges of batteries. Renewable and Sustainable Energy Reviews 104, 192–208 (2019).
- [30] Li, S. et al. Direct Recycling of Cathode Materials from Spent Lithium‐Ion Batteries: Principles, Strategies, and Perspectives. Chemistry – A European Journal 31, (2025).
- [31] McKinsey, 2023. https://www.mckinsey.com/industries/automotiveand-%20assembly/ourinsights/battery-2030-resilient-sustainable-and-circular#
- [32] Wood, E., Alexander, M. & Bradley, T. H. Investigation of battery end-of-life conditions for plugin hybrid electric vehicles. J Power Sources 196, 5147–5154 (2011).
- [33] Hossain, E. et al. A Comprehensive Review on Second-Life Batteries: Current State, Manufacturing Considerations, Applications, Impacts, Barriers & Potential Solutions, Business Strategies, and Policies. IEEE Access 7, 73215–73252 (2019).
- [34] Government; H.M. (2021). Net Zero Strategy: Build Back Greener368 (Gov.UK). https://www.gov.uk/government/publications/net-zero-strategy
- [35] European commission (2024). A European Green Deal. https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en
- [36] Knobloch, F., Hanssen, S.V., Lam, A., Pollitt, H., Salas, P., Chewpreecha, U., Huijbregts, M.A.J., Mercure, J.-F., Hanssen, S.V., and Huijbregts, M.A.J. (2020). Net emission reductions from electric cars and heat pumps in 59 world regions over time. Nat. Sustain. 3, 437–447. https://doi.org/10.1038/s41893-020-0488-7
- [37] Gaines, L. (2014). The future of automotive lithium-ion battery recycling: charting a sustainable course. Sustain. Mater. Technol. 1– 2, 2–7. https://doi.org/10.1016/j.susmat.2014.10.001
- [38] European Parliament (2022). New Eu regultory framework for batteries: Setting sustainability requirements. https://www.europarl.europa.eu/thinktank/en/document/EPRS_BRI(2021)689337
- [39] Sun, X., Hao, H., Hartmann, P., Liu, Z., and Zhao, F. (2019). Supply risks of lithium-ion battery materials: An entire supply chain estimation. Mater. Today Energy 14, 100347. https://doi.org/10.1016/j.mtener.2019.100347
- [40] Sommerville, R., Zhu, P., Rajaeifar, M.A., Heidrich, O., Goodship, V., and Kendrick, E. (2021). A qualitative assessment of lithium ion battery recycling processes. Resour. Conserv. Recycl. 165, 105219. https://doi.org/10.1016/j.resconrec.2020.105219
- [41] Gaines, L., Richa, K., and Spangenberger, J. (2018). Key issues for Li-ion battery recycling. MRS Energy Sustain. 5, 1–14. https://doi.org/10.1557/mre.2018.13
- [42] Harper, G.D.J., Kendrick, E., Anderson, P.A., Mrozik, W., Christensen, P., Lambert, S., Greenwood, D., Das, P.K., Ahmeid, M., Milojevic, Z., et al. (2023). Roadmap for a sustainable circular economy in lithium-ion and future battery technologies. J. Phys. Energy 5, 21501. https://doi.org/10.1088/2515-7655/acaa57
- [43] Lv, W., Wang, Z., Cao, H., Sun, Y., Zhang, Y., and Sun, Z. (2018). A Critical Review and Analysis on the Recycling of Spent Lithium-Ion Batteries. ACS Sustainable Chem. Eng. 6, 1504–1521. https://doi.org/10.1021/acssuschemeng.7b03811
- [44] Ferreira, D.A., Prados, L.M.Z., Majuste, D., annd Mansur, M.B. (2009). Hydrometallurgical separation of aluminium, cobalt, copper and lithium from spent Li-ion batteries. J. Power Sources 187, 238–246. https://doi.org/10.1016/j.jpowsour.2008.10.077
- [45] Harper, G., Sommerville, R., Kendrick, E., Driscoll, L., Slater, P., Stolkin, R., Walton, A., Christensen, P., Heidrich, O., Lambert, S., et al. (2019). Recycling lithium-ion batteries from electric vehicles. Nature 575, 75–86. https://doi.org/10.1038/s41586-019-1682-5
- [46] Chen, X., Chen, Y., Zhou, T., Liu, D., Hu, H., and Fan, S. (2015). Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries. Waste Manag. 38, 349–356. https://doi.org/10.1016/j.wasman.2014.12.023
- [47] Li, H., Xing, S., Liu, Y., Li, F., Guo, H., and Kuang, G. (2017). Recovery of Lithium, Iron, and Phosphorus from Spent LiFePO4 Batteries Using Stoichiometric Sulfuric Acid Leaching System. ACS Sustainable Chem. Eng. 5, 8017–8024. https://doi.org/10.1021/acssuschemeng.7b01594
- [48] Sloop, S.E., Crandon, L., Allen, M., Lerner, M.M., Zhang, H., Sirisaksoontorn, W., Gaines, L., Kim, J., and Lee, M. (2019). Cathode healing methods for recycling of lithium-ion batteries. Sustain. Mater. Technol. 22, e00113. https://doi.org/10.1016/j.susmat.2019.e00113
- [49] M. Rasheed et al., "Active Reconditioning of Retired Lithium-Ion Battery Packs From Electric Vehicles for Second-Life Applications," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 12, no. 1, pp. 388-404, Feb. 2024, https://doi.org/10.1109/JESTPE.2023.3325251
- [50] Sarker, M.T.; Haram, M.H.S.M.; Shern, S.J.; Ramasamy, G.; Al Farid, F. Second-Life Electric Vehicle Batteries for Home Photovoltaic Systems: Transforming Energy Storage and Sustainability, Energies 2024, 17, 2345. https://doi.org/10.3390/en17102345
- [51] Delmas C, Braconnier J-J, Fouassier C, Hagenmuller P (1981) Electrochemical Intercalation of Sodium in NaxCoO2 Bronzes. Solid State Ionics 3:165–169.
- [52] Abraham KM (1982) Intercalation positive electrodes for rechargeable sodium cells. Solid State Ionics 7:199–212. https://doi.org/10.1016/0167-2738(82)90051-0
- [53] Delmas C (1989) Alkali metal intercalation in layered oxides. Mater Sci Eng B 3:97–101. https://doi.org/10.1016/0921-5107(89)90185-2
- [54] Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114:11636–11682. https://doi.org/10.1021/cr500192f
- [55] Yabuuchi N, Kajiyama M, Iwatate J, et al (2012) P2-type Nax [Fe1/2 Mn1/2[O2 made from earthabundant elements for rechargeable Na batteries. Nat Mater 11:512–517. https://doi.org/10.1038/nmat3309
- [56] Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A 32:751–767. https://doi.org/10.1107/S0567739476001551
- [57] Doeff MM, Ma Y, Visco SJ, De Jonghe LC (1993) Electrochemical Insertion of Sodium into Carbon. J Electrochem Soc 140:L169–L170. https://doi.org/10.1149/1.2221153
- [58] Ge P, Fouletier M (1988) Electrochemical intercalation of sodium in graphite. Solid State Ionics 28–30:1172–1175. https://doi.org/10.1016/0167-2738(88)90351-7
- [59] Jache B, Adelhelm P (2014) Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angew Chemie - Int Ed 53:10169–10173. https://doi.org/10.1002/anie.201403734
- [60] Hasa I, Dou X, Buchholz D, et al (2016) A sodium-ion battery exploiting layered oxide cathode, graphite anode and glyme-based electrolyte. J Power Sources 310:26–31. https://doi.org/10.1016/j.jpowsour.2016.01.082
- [61] Park J, Xu ZL, Kang K (2020) Solvated Ion Intercalation in Graphite: Sodium and Beyond. Front Chem 8:1–14. https://doi.org/10.3389/fchem.2020.00432
- [62] Hurlbutt K, Wheeler S, Capone I, Pasta M (2018) Prussian Blue Analogs as Battery Materials. Joule 2:1950–1960. https://doi.org/10.1016/j.joule.2018.07.017
- [63] Delmas C, Fouassier C, Hagenmuller P (1980) Structural Classification and Properties of the Layered Oxides. Physica 99B:81–85
- [64] Hasa I, Buchholz D, Passerini S, Hassoun J (2015) A comparative study of layered transition metal oxide cathodes for application in sodium-ion battery. ACS Appl Mater Interfaces 7:5206–5212. https://doi.org/10.1021/am5080437
- [65] A.K. Padhi, V. Manivannan, J.B. Goodenough, Tuning the Position of the Redox Couples in Materials with NASICON Structure by Anionic Substitution, J. Mater. Process. Technol. 145 (1998) 1518–1520. http://dx.doi.org/10.1016/j.cirp.2016.06.001%0A
- [66] Q. Ni, Y. Bai, F. Wu, C. Wu, Polyanion-type electrode materials for sodium-ion batteries, Adv. Sci. 4 (2017) 1600275. doi:10.1002/advs.201600275
- [67] J.F. Keggin, F.D. Miles, Structures and formulæ of the prussian blues and related compounds, Nature. 137 (1936) 577–578. doi:10.1038/137577a0
- [68] Z. Shen, S. Guo, C. Liu, Y. Sun, Z. Chen, J. Tu, S. Liu, J. Cheng, J. Xie, G. Cao, X. Zhao, Na-Rich Prussian White Cathodes for Long-Life Sodium-Ion Batteries, ACS Sustain. Chem. Eng. 6 (2018) 16121–16129. doi:10.1021/acssuschemeng.8b02758
- [69] L. Wang, Y. Lu, J. Liu, M. Xu, J. Cheng, D. Zhang, J.B. Goodenough, A superior low-cost cathode for a Na-Ion battery, Angew. Chemie - Int. Ed. 52 (2013) 1964–1967. doi:10.1002/anie.201206854
- [70] https://www.innovationnewsnetwork.com/how-prussian-white-will-revolutionise-sodium-ionbatteries/46042/
- [71] . Bauer, J. Song, S. Vail, W. Pan, J. Barker, Y. Lu, The Scale-up and Commercialization of Nonaqueous Na-Ion Battery Technologies, Adv. Energy Mater. 8 (2018) 1–13. doi:10.1002/aenm.201702869
- [72] D. Saurel, B. Orayech, B. Xiao, D. Carriazo, X. Li, T. Rojo, Advanced Energy Materials 8 (2018) 1703268. https://doi.org/10.1002/aenm.201703268
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b7d92b0d-d595-47eb-983e-bc65975c9310
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.