PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

High-displacement electret-based energy harvesting system for powering leadless pacemakers from heartbeats

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In vivo biomedical devices are one of the most studied applications for vibrational energy harvesting. In this paper, we investigated a novel high-displacement device for harvesting heartbeats to power leadless implantable pacemakers. Due to the location peculiarities, certain constraints must be respected for the design of such devices. Indeed, the total dimension of the system must not exceed 5.9 mm to be usable within the leadless pacemakers and it must be able to generate accelerations lower than 0.25 m/s2 at frequencies of less than 50 Hz. The proposed design is an electrostatic system based on a square electret of dimension 4.5 mm. It is based on the Quasi-Concertina structure, which has a very low resonant frequency of 26.02 Hz and a low stiffness of 0.492 N/m, allowing it to be very useful in such an application. Using a Teflon electret charged at 1000 V, the device was able to generate an average power of 10.06 μW at a vibration rate of 0.25 m/s2 at the resonant frequency.
Rocznik
Strony
229--238
Opis fizyczny
Bibliogr. 27 poz., tab., wz.
Twórcy
autor
  • Systems Integration and Emerging Energies (SI2E), École nationale d’ingénieurs de Sfax, Université de Sfax 3038 Sfax, Tunisia
  • Systems Integration and Emerging Energies (SI2E), École nationale d’ingénieurs de Sfax, Université de Sfax 3038 Sfax, Tunisia
  • Electronics Technology Group, Institute of Micro and Nanotechnologies MacroNano Technische Universität Ilmenau, Gustav-Kirchhoff-Straße 1 Ilmenau 98693, Germany
  • Center for Research in Microelectronics and Nanotechnology (CRMN) Sousse 4050, Tunisia
autor
  • Systems Integration and Emerging Energies (SI2E), École nationale d’ingénieurs de Sfax, Université de Sfax 3038 Sfax, Tunisia
Bibliografia
  • [1] Miller M.A., Neuzil P., Dukkipati S.R., Reddy V.Y., Leadless Cardiac Pacemakers: Back to the Future, Journal of the American College of Cardiology, vol. 66, no. 10, pp. 1179–1189 (2015), DOI: 10.1016/j.jacc.2015.06.1081.
  • [2] Hallmann M., Wenge C., Komarnicki P., Balischewski S., Methods for lithium-based battery energy storage SOC estimation. Part I: Overview, Archives of Electrical Engineering, vol. 71, no. 1, pp. 139–157 (2022), DOI: 10.24425/aee.2022.140202.
  • [3] Riaz A., Sarker M.R., Saad M.H.M., Mohamed R., Review on comparison of different energy storage technologies used in micro-energy harvesting, WSNs, low-cost microelectronic devices: challenges and recommendations, Sensors, vol. 21, no. 15, p. 5041 (2021), DOI: 10.3390/s21155041.
  • [4] Ghosh P.C., Sadhu P.K., Ghosh A., Pal N., A new circuit topology using Z-source resonant inverter for high power contactless power transfer applications, Archives of Electrical Engineering, vol. 66, no. 4 (2017), DOI: 10.1515/aee-2017-0064.
  • [5] Bose S., Shen B., Johnston M.L., A batteryless motion-adaptive heartbeat detection system-on-chip powered by human body heat, IEEE Journal of Solid-State Circuits, vol. 55, no. 11, pp. 2902–2913 (2020), DOI: 10.1109/JSSC.2020.3013789.
  • [6] Maamer B., Jaziri N., Kaziz S., Tounsi F., Towards Autonomous Node Sensors: Green Versus RF Energy Harvesting, in IEEE International Conference on Design and Test of Integrated Micro and Nano-Systems (DTS), pp. 1–5 (2021), DOI: 10.1109/DTS52014.2021.9498247.
  • [7] Liu L., Guo X., Liu W., Lee C., Recent progress in the energy harvesting technology—from self-powered sensors to self-sustained IoT, and new applications, Nanomaterials, vol. 11, no. 11, p. 2975 (2021), DOI: 10.3390/nano11112975.
  • [8] Garus S., Błachowski B., Sochacki W., Jaskot A., Kwiatoń P., Ostrowski M., Šofer M., Kapitaniak T., Mechanical vibrations: recent trends and engineering applications, Bulletin of the Polish Academy of Sciences: Technical Sciences, vol. 70, no. 1, p. e140351 (2022), DOI: 10.24425/bpasts.2022.140351.
  • [9] Blad T., Micro Energy Harvesting from Low-Frequency Vibrations: Towards Powering Pacemakers with Heartbeats, Ph.D. dissertation, Delft University of Technology (2021).
  • [10] Maamer B., Boughamoura A., El-Bab A.M.F., Francis L.A., Tounsi F., A review on design improvements and techniques for mechanical energy harvesting using piezoelectric and electromagnetic schemes, Energy Conversion and Management, vol. 199, p. 111973 (2019), DOI: 10.1016/j.enconman.2019.111973.
  • [11] Atmeh M., Ibrahim A., Modeling of Piezoelectric Vibration Energy Harvesting from Low-Frequency Using Frequency Up-Conversion, Smart Materials, Adaptive Structures and Intelligent Systems, vol. 85499, p. V001T04A011 (2021), DOI: 10.1115/SMASIS2021-68360.
  • [12] Jay S., Caballero M., Quinn W., Barrett J., Hill M., Characterization of piezoelectric device for implanted pacemaker energy harvesting, Journal of Physics: Conference Series, vol. 757, no. 1, p. 012038 (2016), DOI: 10.1088/1742-6596/757/1/012038.
  • [13] Lombardi G., Unified nonlinear electrical interfaces for hybrid piezoelectric-electromagnetic small-scale harvesting systems, Ph.D. dissertation, National Institute of Applied Sciences, University of Lyon (2020).
  • [14] Kumar A., Kiran R., Chauhan V.S., Kumar R., Vaish R., Piezoelectric energy harvester for pacemaker application: a comparative study, Materials Research Express, vol. 5, no. 7, p. 075701 (2018), DOI: 10.1088/2053-1591/aab456.
  • [15] Ansari M., Karami M.A., Experimental investigation of fan-folded piezoelectric energy harvesters for powering pacemakers, Smart Materials and Structures, vol. 26, no. 6, p. 065001 (2017), DOI: 10.1088/1361-665X/aa6cfd.
  • [16] Jackson N., Olszewski O.Z., O’Murchu C., Mathewson A., Shock-induced aluminum nitride based MEMS energy harvester to power a leadless pacemaker, Sensors and Actuators A: Physical, vol. 264, pp. 212–218 (2017), DOI: 10.1016/j.sna.2017.08.005.
  • [17] Vysotskyi B., Parrain F., Le Roux X., Lefeuvre E., Gaucher P., Aubry D., Electrostatic vibration energy harvester using multimodal-shaped springs for pacemaker application, in Symposium on Design, Test, Integration and Packaging of MEMS and MOEMS (DTIP), pp. 1–6 (2018), DOI: 10.1109/DTIP.2018.8394216.
  • [18] Ahmed S., Kakkar V., An electret-based angular electrostatic energy harvester for battery-less cardiac and neural implants, IEEE Access, vol. 5, pp. 19631–19643 (2017), DOI: 10.1109/AC-CESS.2017.2739205.
  • [19] Colin M., Basrour S., Rufer L., Design, fabrication and characterization of a very low frequency piezoelectric energy harvester designed for heartbeat vibration scavenging, Smart Sensors, Actuators, and MEMS VI, vol. 8763, p. 87631P (2013), DOI: 10.1117/12.2017439.
  • [20] Lefeuvre E., Risquez S., Wei J., Woytasik M., Parrain F., Self-biased inductor-less interface circuit for electret-free electrostatic energy harvesters, Journal of Physics: Conference Series, vol. 557, no. 1, p. 012052 (2014), DOI: 10.1088/1742-6596/557/1/012052.
  • [21] Bi M., Wu Z., Wang S., Cao Z., Cheng Y., Ma X., Ye X., Optimization of structural parameters for rotary freestanding-electret generators and wind energy harvesting, Nano Energy, vol. 75, p. 104968 (2020), DOI: 10.1016/j.nanoen.2020.104968.
  • [22] Bhatia N., El-Chami M., Leadless pacemakers: a contemporary review, Journal of geriatric cardiology: JGC, vol. 15, no. 4, p. 249 (2018), DOI: 10.11909/j.issn.1671-5411.2018.04.002.
  • [23] Sideris S., Archontakis S., Dilaveris P., Gatzoulis K.A., Trachanas K., Sotiropoulos I., Arsenos P., Tousoulis D., Kallikazaros I., Leadless cardiac pacemakers: current status of a modern approach in pacing, Hellenic Journal of Cardiology, vol. 58, no. 6, pp. 403–410 (2017), DOI: 10.1016/j.hjc.2017.05.004.
  • [24] Kanai H., Sato M., Koiwa Y., Chubachi N., Transcutaneous measurement and spectrum analysis of heart wall vibrations, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 43, no. 5, pp. 791–810 (1996), DOI: 10.1109/58.535480.
  • [25] Karami M.A. Inman D.J., Linear and nonlinear energy harvesters for powering pacemakers from heart beat vibrations, Active and Passive Smart Structures and Integrated Systems 2011, vol. 7977, p. 797703 (2011), DOI: 10.1117/12.880168.
  • [26] Grech D., Development of a Quasi-concertina MEMS sensor for the characterisation of biopolymers, Ph.D. dissertation, University of Southampton (2014).
  • [27] Maamer B., Fath El-Bab A.M.R., Tounsi F., Impact-Driven Frequency-Up Converter Based on High Flexibility Quasi-Concertina Spring for Vibration Energy Harvesting, Energy Conversion and Management, vol. 274, p. 116460 (2022), DOI: 10.1016/j.enconman.2022.116460.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b7d84c6a-fede-4e7b-992f-ca2f440c5176
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.