PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Refractive index and salinity sensors by gallium-doped zinc oxide thin film coated on side-polished fibers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work presents a high-sensitivity refractive index and salinity sensor by using fiber-optic side-polishing and electron-beam evaporation techniques. Thin film coated on the flat surface of side-polished fibers can generate a lossy mode resonance (LMR) effect. A gallium-doped zinc oxide (GZO) thin film was prepared by an electron-beam evaporation with the ion assisted deposition method. The residual thickness of the side-polished fiber was 76.5 μm, and GZO film thickness of 69 nm was deposited on the flat surface of the side-polished fiber to fabricate LMR-based fiber sensors. The variation in the optical spectrum of LMR-based fiber sensors was measured by different refractive index saline solutions. The LMR wavelength shift is caused by the refractive index change, which is nearly proportional to the salinity. The corresponding sensitivity of the proposed fiber-optic sensor was 3059 nm/RIU (refractive index unit) for the refractive index range of 1.333 to 1.398. To evaluate the sensitivity of LMR salinity sensors, the saline solution salinities of 3.6%, 7.3%, 10.9%, 14.6%, 18.2% and 21.9% were measured in this work. The experimental result shows that the sensitivity of the proposed salinity sensor is 9.94 nm/%.
Czasopismo
Rocznik
Strony
23--36
Opis fizyczny
Bibliogr 37 poz., rys.
Twórcy
  • Department of Electrical Engineering, Feng Chia University, Taichung, Taiwan
  • Ph.D. Program of Electrical and Communications Engineering, Feng Chia University, Taichung, Taiwan
  • Department of Electrical Engineering, Feng Chia University, Taichung, Taiwan
autor
  • Ph.D. Program of Electrical and Communications Engineering, Feng Chia University, Taichung, Taiwan
Bibliografia
  • [1] JOE H.E., YUN H., JO S.H., JUN M.B.G., MIN B.K., A review on optical fiber sensors for environmental monitoring, International Journal of Precision Engineering and Manufacturing-Green Technology 5(1), 2018, pp. 173–191, DOI:10.1007/s40684-018-0017-6.
  • [2] TAHHAN S.R., CHEN R.Z., HUANG S., HAJIM K.I.,CHEN K.P., Fabrication of fiber Bragg grating coating with TiO2 nanostructured metal oxide for refractive index sensor, Journal of Nanotechnology 2017, 2017, article 2791282, DOI:10.1155/2017/2791282.
  • [3] LI Q.S., ZHANG X.L., HE H., MENG Q., SHI J., WANG J.N., DONG W.F., Improved detecting sensitivity of long period fiber gratings by polyelectrolyte multilayers: the effect of film structures, Optics Communications 331, 2014, pp. 39–44, DOI:10.1016/j.optcom.2014.05.046.
  • [4] HASAN MD. R., AKTER S., RAHMAN M.S., AHMED K., Design of a surface plasmon resonance refractive index sensor with high sensitivity, Optical Engineering 56(8), 2017, article 087101, DOI:10.1117/1.OE.56.8.087101.
  • [5] USHA S.P., GUPTA B.D., Performance analysis of zinc oxide-implemented lossy mode resonance-based optical fiber refractive index sensor utilizing thin film/nanostructure, Applied Optics 56(20), 2017, pp. 5716–5725, DOI:10.1364/AO.56.005716.
  • [6] GUNTER G., BALLARD B.S., VENKATARAMIAH A., A review of salinity problems of organisms in United States coastal areas subject to the effects of engineering works effects of engineering works, Gulf Research Reports 4(3), 1974, pp. 380–475, DOI:10.18785/GRR.0403.05.
  • [7] JIN Y.Y., CHEN Z.X., WANG Q.J., Measurement laser optic-fiber technique for measuring the salinity of a solar pond, Acta Eneglae Solaris Sinica 15, 1994, pp. 198–200.
  • [8] DINIZ F.B., DE FREITAS K C.S., DE AZEVEDO W.M., Salinity measurements with polyaniline matrix coated wire electrodes, Electrochemistry Communications 1(7), 1999, pp. 271–273, DOI:10.1016/S1388-2481(99)00057-0.
  • [9] ZHAO Y., LIAO Y., Novel optical fiber sensor for simultaneous measurement of temperature and salinity, Sensors and Actuators B: Chemical 86(1), 2002, pp. 63–67, DOI:10.1016/S0925-4005(02)00148-X.
  • [10] ZHAO Y., LIAO Y., ZHANG B., LAI S., Monitoring technology of salinity in water with optical fiber sensor, Journal of Lightwave Technology 21(5), 2003, pp. 1334–1338, DOI:10.1109/JLT.2003.811318.
  • [11] MEN L., LU P., CHEN Q., A multiplexed fiber Bragg grating sensor for simultaneous salinity and temperature measurement, Journal of Applied Physics 103(5), 2008, article 053107, DOI:10.1063/1.2890156.
  • [12] QIAN Y., ZHAO Y., WU Q.L., YANG Y., Review of salinity measurement technology based on optical fiber sensor, Sensors and Actuators B: Chemical 260, 2018, pp. 86–105, DOI:10.1016/j.snb.2017.12.077.
  • [13] YU F.T.S., YIN S., Fiber Optic Sensors, Dekker, New York, 2002, Chaps. 2 and 4.
  • [14] ANDREEV A.T., ZAFIROVA B.S., KARAKOLEVA E.I., DIKOVSKA A.O., ATANASOV P.A., Highly sensitive refractometers based on a side-polished single-mode fibre coupled with a metal oxide thin-film planar waveguide, Journal of Optics A 10(3), 2008, article 035303, DOI:10.1088/1464-4258/10/3/035303.
  • [15] TIEN C.L., CHEN H.W., LIU W.F., JYU S.S., LIN S.W., LIN Y.S., Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film, Thin Solid Films 516(16), 2008, pp. 5360–5363, DOI:10.1016/j.tsf.2007.07.045.
  • [16] SCHROEDER K., ECKE W., MUELLER R., WILLSCH R., ANDREEV A., A fibre Bragg grating refractometer, Measurement Science and Technology 12(7), 2001, pp. 757–764, DOI:10.1088/0957-0233/12/7/301.
  • [17] CUSANO A., IADICICCO A., PILLA P., CONTESSA L., CAMPOPIANO S., CUTOLO A., GIORDANO M., Mode transition in high refractive index coated long period gratings, Optics Express 14(1), 2006, pp. 19–34, DOI:10.1364/OPEX.14.000019.
  • [18] TIAN M., LU P., CHEN L., LV C., LIU D., All-solid D-shaped photonic fiber sensor based on surface plasmon resonance, Optics Communications 285(6), 2012, pp. 1550–1554, DOI:10.1016/j.optcom.2011.11.104.
  • [19] WU L., CHU H.S., KOH W.S., LI E.P., Highly sensitive graphene biosensors based on surface plasmon resonance, Optics Express 18(14), 2010, pp. 14395–14400, DOI:10.1364/OE.18.014395.
  • [20] YANG F., SAMBLES J.R., BRADBERRY G.W., Long-range surface modes supported by thin films, Physical Review B 44(11), 1991, pp. 5855–5872, DOI:10.1103/PhysRevB.44.5855.
  • [21] KRETSCHMANN E., RAETHER H., Radiative decay of non radiative surface plasmons excited by light, Zeitschrift für Naturforschung A 23(12), 1968, pp. 2135–2136, DOI:10.1515/zna-1968-1247.
  • [22] YANG F., SAMBLES J.R., Determination of the optical permittivity and thickness of absorbing films using long range modes, Journal of Modern Optics 44(6), 1997, pp. 1155–1163, DOI:10.1080/09500349708230726.
  • [23] WANG T., ZALKOVSKIJ M., IWASZCZUK K., LAVRINENKO A.V., NAIK G.V., KIM J., BOLTASSEVA A., JEPSEN P.U., Ultrabroadband terahertz conductivity of highly doped ZnO and ITO, Optical Materials Express 5(3), 2015, pp. 566–575, DOI:10.1364/OME.5.000566.
  • [24] KIM J., NAIK G.V., GAVRILENKO A.V., DONDAPATI K., GAVRILENKO V.I., PROKES S.M., GLEMBOCKI O.J., SHALAEV V.M., BOLTASSEVA A., Optical properties of gallium-doped zinc oxide—A low-loss plasmonic material: first-principles theory and experiment, Physical Review X 3(4), 2013, article 041037, DOI:10.1103/PhysRevX.3.041037.
  • [25] KIM J.S., JEONG J.H., PARK J.K., BAIK Y.J., KIM I.H., SEONG T.Y., KIM W.M., Optical analysis of doped ZnO thin films using nonparabolic conduction-band parameters, Journal of Applied Physics 111(12), 2012, article 123507, DOI:10.1063/1.4729571.
  • [26] KIM Y.H., JEONG J., LEE K.S., CHEONG B., SEONG T.Y., KIM W.M., Effect of composition and deposition temperature on the characteristics of Ga doped ZnO thin films, Applied Surface Science 257(1), 2010, pp. 109–115, DOI:10.1016/j.apsusc.2010.06.045.
  • [27] DEL VILLAR I., HERNAEZ M., ZAMARREÑO C.R., SÁNCHEZ P., FERNÁNDEZ-VALDIVIELSO C., ARREGUI F.J., MATIAS I.R., Design rules for lossy mode resonance based sensors, Applied Optics 51(19), 2012, pp. 4298–4307, DOI:10.1364/AO.51.004298.
  • [28] GUPTA B.D., VERMA R.K., Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications, Journal of Sensors 2009, 2009, article 979761, DOI:10.1155/2009/979761.
  • [29] BATCHMAN T., MCWRIGHT G., Mode coupling between dielectric and semiconductor planar wave-guides, IEEE Journal of Quantum Electronics 18(4), 1982, pp. 782–788, DOI:10.1109/JQE.1982.1071578.
  • [30] DEL VILLAR I., ZAMARRENO C.R., HERNAEZ M., ARREGUI F.J., MATIAS I.R., Lossy mode resonance generation with indium-tin-oxide-coated optical fibers for sensing applications, Journal of Light-wave Technology 28(1), 2010, pp. 111–117, DOI:10.1109/JLT.2009.2036580.
  • [31] ZUBIATE P., ZAMARREÑO C.R., DEL VILLAR I., MATIAS I.R., ARREGUI F.J., High sensitive refractometers based on lossy mode resonances (LMRs) supported by ITO coated D-shaped optical fibers, Optics Express 23(6), 2015, pp. 8045–8050, DOI:10.1364/OE.23.008045.
  • [32] ZHAO W.M, WANG Q., WANG X.Z., LI X., JING J.Y., SUN H.Z., Theoretical and experimental research of lossy mode resonance-based high-sensitivity optical fiber refractive index sensors, Journal of the Optical Society of America B 36(8), 2019, pp. 2069–2078, DOI:10.1364/JOSAB.36.002069.
  • [33] HERNÁEZ M., DEL VILLAR I., ZAMARREÑO C.R., ARREGUI F.J., MATIAS I.R., Optical fiber refractometers based on lossy mode resonances supported by TiO2 coatings, Applied Optics 49(20), 2010, pp. 3980–3985, DOI:10.1364/AO.49.003980.
  • [34] ZAMARREÑO C.R., SANCHEZ P., HERNÁEZ M., DEL VILLAR I., FERNANDEZ-VALDIVIELSO C., MATÍAS I.R., ARREGUI F.J., Sensing properties of indium oxide coated optical fiber devices based on lossy mode resonances, IEEE Sensors Journal 12(1), 2012, pp. 151–155, DOI:10.1109/JSEN.2011.2142181.
  • [35] ZIMAN M., Principles of the Theory of Solids, Cambridge University Press, 1979.
  • [36] LOOK D., LEEDY K., GRZYBOWSKI G., CLAFLIN B., Near-infrared (1 to 4 μm) control of plasmonic resonance wavelength in Ga-doped ZnO, Optical Engineering 56(5), 2017, article 057109, DOI:10.1117/1.OE.56.5.057109.
  • [37] CHEN H., ZHANG S., FU H., ZHOU B., CHEN N., Sensing interrogation technique for fiber-optic interferometer type of sensors based on a single-passband RF filter, Optics Express 24(3), 2016, pp. 2765–2773, DOI:10.1364/OE.24.002765.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b7d72944-b175-4639-a9bd-50733b46051f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.