PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Zastosowanie topologicznej analizy gęstości elektronowej do opisu oddziaływań niekowalencyjnych

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
The use of topological analysis of electron density in characterization of noncovalent interactions
Języki publikacji
PL
Abstrakty
EN
All atomic and molecular properties are governed by an electron density distribution. Thus, the methods that deal with an analysis of the electron density distribution should have a particular appeal for chemists and help to understand the electron structure of molecules. The Quantum Theory of Atoms in Molecules gives the unique opportunity to have an insight into a region (e.g., an atom) of a given system (e.g. a molecule), delivering partitioning scheme which is defined explicitly within the rigorous quantum theory, from one side, and is applicable for experimentally available set of observables, from the other side. In that way QTAIM delivers a chemist a theoretical tool to study a small part of a molecule only, instead of dealing with the total energy of a whole system. In consequence, QTAIM has become one of the most powerful utilities of modern chemistry, forming a bridge between advanced theoretical and experimental techniques. In particular the properties of the electron density function in the so-called bond critical point (BCP, the (3, -1) saddle point on electron density curvature) seem to be valuable information for chemists, since it was proven in many papers that the chemical bonding can be characterized and classified on the basis of electron density characteristics measured in BCPs . In this review we firstly give a brief introduction to the theory, explaining most basic terms and dependences. In the main part of the review we discuss application of QTAIM in the qualitative and quantitative analysis of several various noncovalent interactions, focusing readers attention on such aspects as classification of interactions and interaction energy assessment. Both theoretical and experimental approaches are taken into account. We also discuss extensions of QTAIM to the analysis of the so called source function – the method which additionally enlarge interpretative possibilities of its parent theory. Finally, we give some examples which perhaps escape a rigorous QTAIM definition of chemical bonding. We acquaint the potential reader with arguments being pro- and against the QTAIM-based deterministic model of a chemical bond.
Rocznik
Strony
457--486
Opis fizyczny
Bibliogr. 84 poz., rys., schem., tab.
Twórcy
  • Katedra Chemii Teoretycznej i Strukturalnej, Wydział Chemii, Uniwersytet Łódzki, ul. Pomorska 163/165, 90-236 Łódź
  • Zakład Chemii Teoretycznej, Instytut Chemii, Uniwersytet w Białymstoku, ul. Hurtowa 1, 15-339 Białystok
  • Katedra Chemii Teoretycznej i Strukturalnej, Wydział Chemii, Uniwersytet Łódzki, ul. Pomorska 163/165, 90-236 Łódź
autor
  • Katedra Chemii Teoretycznej i Strukturalnej, Wydział Chemii, Uniwersytet Łódzki, ul. Pomorska 163/165, 90-236 Łódź
autor
  • Katedra Chemii Teoretycznej i Strukturalnej, Wydział Chemii, Uniwersytet Łódzki, ul. Pomorska 163/165, 90-236 Łódź
autor
  • Katedra Chemii Teoretycznej i Strukturalnej, Wydział Chemii, Uniwersytet Łódzki, ul. Pomorska 163/165, 90-236 Łódź
Bibliografia
  • [1] A.D. McNaught, A. Wilkinson, IUPAC. Compendium of Chemical Terminology, 2nd ed. (the „Gold Book”), Blackwell Scientific Publications, Oxford, 1997. XML on-line corrected version: http://goldbook.iupac.org (2006-) created by M. Nic, J. Jirat, B. Kosata; updates compiled by A. Jenkins. Last update: 2012-08-19; version: 2.3.2.
  • [2] H. Hellmann, Einfuhrung in die Quantenchemie, Franz Deuticke, Leipzig, Wiedeń 1937.
  • [3] R.P. Feynman, Phys. Rev. 1939, 56, 340.
  • [4] J.C. Slater, J. Chem. Phys., 1972, 57, 2389.
  • [5] R.F.W. Bader, [w:] J. Phys. Chem. A, 2010, 114 (28), 7431.
  • [6] R.F.W. Bader, Atoms in Molecules. A Quantum Theory, Clarendon Press, Oxford, 1994.
  • [7] P. Popelier, Atoms in Molecules. An Introduction, Pearson Education Limited, Prentice Hall, Harlow, 2000.
  • [8] C.F. Matta, R.J. Boyd, The Quantum Theory of Atoms in Molecules. From Solid State to DNA and Drug Design., An Introduction to the Quantum Theory of Atoms in Molecules, T. 1, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007.
  • [9] M. Rafat, P.L.A. Popelier, J. Comput. Chem., 2007, 28, 2602 oraz Galeria witryny internetowej grupy badawczej P.L.A. Popelier’a: http://www.chemistry.manchester.ac.uk/groups/popelier/index.htm, stan z 01.12.2013 (za zgodą autorow).
  • [10] S.J. Grabowski, Chem. Rev., 2011, 111, 2597.
  • [11] I. Rozas, I. Alkorta, J. Elguero, J. Am. Chem. Soc., 2000, 122, 11154.
  • [12] U. Koch, P. Popelier, J. Chem. Phys., 1995, 99, 9747.
  • [13] I. Mata, I. Alkorta, E. Espinosa, E. Molins, J. Elguero, Topological Properties of the Electron Distribution in Hydrogen-bonded Systems [w:] The Quantum Theory of Atoms in Molecules from Solid State to DNA and Drug Design, edytorzy: C.F. Mattai R.J. Boyd; Wiley-VCH, Weinheim, 2007.
  • [14] Y.A. Abramov, Acta Crystallogr., 1997, A53, 264.
  • [15] O. Gavez, P.C. Gomez, L.F. Pacios, Chem. Phys. Lett., 2001, 285, 263.
  • [16] R.F. W. Bader, C. Gatti, Chem. Phys. Lett., 1998, 287, 233.
  • [17] C. Gatti, F. Cargnoni, L. Bertini, J. Comput. Chem., 2003, 24, 422.
  • [18] C. Gatti, L. Bertini, ActaCrystallogr., 2004, A60, 438.
  • [19] C. Gatti, F. Cargnoni, L. Bertini, J. Comput. Chem. (2003), 24, 422.
  • [20] C. Gatti , D. Lasi, Faraday Discuss., (2007), 135, 55.
  • [21] C. Gatti, Struct. Bond., 2012, 147, 193.
  • [22] G. Gilli, P. Gilli, J. Mol. Struct., 2000, 552, 1.
  • [23] R.F.W. Bader, J. Phys. Chem. A, 1998, 102, 7314.
  • [24] R.F.W. Bader, J. Phys. Chem. A, 2009, 113, 10391.
  • [25] M. Jabłoński, M. Palusiak, Chem. Phys., 2013, 415, 207.
  • [26] Linus Pauling, The Nature of the Chemical Bond and the Structure of Molecules and Crystals, Cornell University Press, Ithaca, N. Y., pierwsze wydanie 1932.
  • [27] R.F.W. Bader, T.-H. Tang, Y. Tal, F.W. Biegler-Konig, J. Am. Chem. Soc., 1982, 104, 946.
  • [28] R.J. Boyd, S. Cheng Choi, Chem. Phys. Lett., 1985, 120, 80.
  • [29] R.J. Boyd, S. Cheng Choi, Chem. Phys. Lett., 1986, 129, 62.
  • [30] E. Espinosa, E. Molins, C. Lecomte, Chem. Phys. Lett., 1998, 285, 170.
  • [31] S.J. Grabowski, J. Phys. Chem. A, 2000, 104, 5551.
  • [32] S.J. Grabowski, J. Phys. Chem. A, 2001, 105, 10739.
  • [33] S.J. Grabowski, J. Mol. Struct., 2001, 562, 137.
  • [34] M. Palusiak, S.J. Grabowski, J. Mol. Struct., 2002, 642, 97.
  • [35] M. Jabłoński, M. Palusiak, J. Phys. Chem. A, 2010, 114, 2240.
  • [36] M. Jabłoński, M. Palusiak, J. Phys. Chem. A, 2010, 114, 12498.
  • [37] G. Gilli, P. Gilli The Nature of Hydrogen, Bond Oxford University Press, Oxford, 2010.
  • [38] M. Palusiak , I. Janowska, S.J. Grabowski, Acta Cryst., 2005, C61, m55.
  • [39] A.J. Rybaryczyk-Pirek, Struct. Chem., 2012, 23, 1739.
  • [40] B. Bankiewicz, M. Palusiak, Comp. Theor. Chem., 2011,966, 113.
  • [41] B. Bankiewicz, P. Matczak, M. Palusiak, J. Phys. Chem. A, 2012, 116, 452.
  • [42] N.K. Hansen, P. Coppens, ActaCryst., 1978, A34, 909.
  • [43] S. van Smaalen, J. Netzel, Phys. Scr., 2009,79, 048304.
  • [44] D.E. Hibbs, S.T. Howard, J.P. Huke, M.P. Waller, Phys. Chem. Chem. Phys., 2005, 7, 1772.
  • [45] M.P. Waller, S.T. Howard, J.A. Platts, R.O. Piltz, D.J. Willock, D.E. Hibbs, Chem. Eur. J., 2006, 12, 7603.
  • [46] D. Jayatilaka, Phys. Rev. Lett., 1998, 80, 798.
  • [47] D. Jayatilaka, D.J. Grimwood, ActaCryst. 2001, A57, 76.
  • [48] L. Chęcińska, W. Morgenroth, C. Paulmann, D. Jayatilaka, B. Dittrich, CrystEngComm, 2013, 15, 2084.
  • [49] E.D. Stevens, M.S. Lehmann, P. Coppens, J. Am. Chem. Soc., 1977, 99, 2829.
  • [50] C. Flensburg, S. Larsen, R.F. Stewart, J. Phys. Chem., 1995, 99, 10130.
  • [51] J. Overgaard, B. Schiott, F.K. Larsen, B. Iversen, Chem. Eur. J., 2001, 7, 3756.
  • [52] J. Sorensen, H.F. Clausen, R.D. Poulsen, J. Overgaard, B. Schiott, J. Phys. Chem. A., 2007, 111, 345.
  • [53] M. Małecka, L. Chęcińska, A. Rybarczyk-Pirek, W. Morgenroth, C. Paulmann, Acta Cryst., 2010, B66, 687.
  • [54] M. Małecka, Struct. Chem., 2010, 21, 175.
  • [55] M. Małecka, S. Mondal, S. van Smaalen, C. Paulmann, Acta Cryst., 2013, B69, 621.
  • [56] A. Makal, W. Schilf, B. Kamieński, A. Szady-Chmielewska, E. Grech, K. Woźniak, Dalton Trans., 2011, 40, 421.
  • [57] A. Rybarczyk-Pirek, L. Chęcińska, M. Małecka, C. Paulmann „2,5-Diacethylhydroquinon – experimental and theoretical charge density studies”, materiały konferencyjne 55. Konwersatorium Krystalograficzne, Wrocław, 27-29 czerwca 2013.
  • [58] L. Chęcińska, S. Grabowsky, M. Małecka, A.J. Rybarczyk-Pirek, A. Joźwiak, C. Paulmann, P. Luger, Acta Cryst., 2011, B67, 569.
  • [59] D.J. Wolstenholme, J.J. Weigand, E.M. Cameron, T.S. Cameron, Cryst. Growth Des., 2009, 9, 282.
  • [60] V.R. Hathawar, R. Pal, T.N. Guru Row, Cryst. Growth Des., 2010, 10, 3306.
  • [61] M. Gryl, A. Krawczuk-Pantula, K. Stadnicka, Acta Cryst., 2011, B67, 144.
  • [62] M. Schmidtmann, L.J. Farrugia, D.S. Middlemiss, M.J. Gutmann, G. J. McIntyre, C.C. Wilson, J. Phys. Chem. A., 2009, 113, 13985.
  • [63] A. Rybarczyk-Pirek, A. Poulain, M. Kubicki „Charge density study on p-nitrobenzoic – imidazole salt” materiały konferencyjne 55. Konwersatorium Krystalograficzne, Wrocław, 27–29 czerwca 2013.
  • [64] J. Cioslowski, S.T. Mixon, W.D. Edwards, J. Am. Chem. Soc., 1991, 113, 1083
  • [65] J. Cioslowski, S.T. Mixon, J. Am. Chem. Soc., 1992, 114, 4382.
  • [66] J. Cioslowski, S.T. Mixon, Can. J. Chem., 1992, 70, 443.
  • [67] J. Cioslowski, L. Edgington, B.B. Stefanov, J. Am. Chem. Soc., 1995, 117, 10381.
  • [68] A. Haaland, D.J. Shorokhov, N.V. Tverdova, Chem. Eur. J., 2004, 10, 4416.
  • [69] T. Strenalyuk, A. Haaland, Chem. Eur. J., 2008, 14, 10223.
  • [70] A. Krapp, G. Frenking, Chem. Eur. J., 2007, 13, 8256.
  • [71] E. Cerpa, A. Krapp, A. Vela, G. Merino, Chem. Eur. J., 2008, 14, 10232.
  • [72] E. Cerpa, A. Krapp, R. Flores-Moreno, K.J. Donald, G. Merino, Chem. Eur. J., 2009, 15, 1985.
  • [73] A.H. Pakiari, K. Eskandari, J. Mol. Struct. THEOCHEM, 2007, 806, 1.
  • [74] A. Vila, R.A. Mosquera, J. Mol. Struct. THEOCHEM, 2001, 546, 63.
  • [75] C.F. Matta, N. Castillo, R.J. Boyd, J. Phys. Chem. A, 2005, 109, 3669.
  • [76] J. Poater, M. Sola, F.M. Bickelhaupt, Chem. Eur. J., 2006, 12, 2889.
  • [77] J. Poater, M. Sola, F.M. Bickelhaupt, Chem. Eur. J., 2006, 12, 2902.
  • [78] R.F.W. Bader, Chem. Eur. J., 2006, 12, 2896.
  • [79] R.F.W. Bader, F. De-Cai, J. Chem. Theory and Comp., 2005, 1, 403.
  • [80] M. Jabłoński, M. Palusiak, Chem. Phys., 2013, 415, 207.
  • [81] J. Hernandez-Trujillo, F. Cortes-Guzman, D.-C. Fang, R.F. W. Bader, Faraday Discuss., 2007, 135, 79.
  • [82] C.F. Matta, R.F.W. Bader, J. Phys. Chem. A, 2006, 110, 6365.
  • [83] R.F.W. Bader, J. Hernandez-Trujillo, F. Cortes-Guzman, J. Comput. Chem., 2007, 28, 4.
  • [84] R.F.W. Bader, Chem. Eur. J., 2006, 12, 7769.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b7d5d460-e371-4fa3-979a-977b77b49d94
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.