PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Techno-Economic and Environmental Analysis of a Renewable Hybrid System in Southern Morocco

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents an assessment of the technical and economic feasibility of a 20 MW grid-connected windsolar-photovoltaic hybrid system in the city of Dakhla, located in southern Morocco. During this study, GIS and virtual reality were integrated to model and simulate the productivity of the hybrid system under local climatic conditions. Additionally, 3D modeling of the system provides an immersive view to visually assess the system’s impact on the local landscape and anticipate potential logistical challenges. By taking advantage of this technology, our study goes beyond traditional models, proposing an innovative approach to better understand the spatial and visual dimensions of the project. The results of our study, based on these state-of-the-art methodologies, reveal promising conclusions regarding its annual energy production, which is approximately 60 GW, the levelized cost of energy of the system, which is approximately LCOE = $0.045/kWh, the net present value (NPV) of $27,439,559.00, the internal rate of return (IRR) of 17.5%, and a discounted payback period (DPP) of 8 years. Additionally, from an environmental perspective, the hybrid system has the capacity to avoid approximately 936,494 tons of greenhouse gas emissions, equivalent to savings of approximately $18,729,875.00 in terms of carbon dioxide reduction over its lifetime.
Twórcy
  • Renewable Energy and System Dynamics Laboratory, Faculty of Sciences-Ain Chock, Hassan II University, Casablanca, Morocco
  • Geosciences Laboratory, Faculty of Sciences-Ain Chock, Hassan II University, Casablanca, Morocco.
  • Geosciences Laboratory, Faculty of Sciences-Ain Chock, Hassan II University, Casablanca, Morocco.
  • Geosciences Laboratory, Faculty of Sciences-Ain Chock, Hassan II University, Casablanca, Morocco.
  • Renewable Energy and System Dynamics Laboratory, Faculty of Sciences-Ain Chock, Hassan II University, Casablanca, Morocco
Bibliografia
  • 1. Abdelhady, S. 2021. Performance and cost evaluation of solar dish power plant: sensitivity analysis of levelized cost of electricity (LCOE) and net present value (NPV). Renewable Energy, 168, 332–342.
  • 2. Abdelrahman, M.A., Abdel-Hamid, R.H., Abo Adma, M.A., Daowd, M. 2022. Techno-economic analysis to develop the first wind farm in the Egyptian western desert at Elkharga Oasis. Clean Energy, 6(1), 211–225.
  • 3. Achbab, E., Rhinane, H., Maanan, M., Saifaoui, D. 2020. Developing and applying a GIS-Fuzzy AHP assisted approach to locating a hybrid renewable energy system with high potential: Case of Dakhla region–Morocco. In 2020 IEEE International conference of Moroccan Geomatics (Morgeo), 1–6.
  • 4. Adefarati, T., Bansal, R.C. 2017. Reliability assessment of distribution system with the integration of renewable distributed generation. Applied energy, 185, 158–171.
  • 5. Allouhi, A., Saadani, R., Buker, M.S., Kousksou, T., Jamil, A., Rahmoune, M. 2019. Energetic, economic and environmental (3E) analyses and LCOE estimation of three technologies of PV grid-connected systems under different climates. Solar Energy, 178, 25–36.
  • 6. Allouhi, A., Saadani, R., Kousksou, T., Saidur, R., Jamil, A., Rahmoune, M. 2016. Grid-connected PV systems installed on institutional buildings: Technology comparison, energy analysis and economic performance. Energy and Buildings, 130, 188–201.
  • 7. Arslan, T., Bulut, Y.M., Yavuz, A.A. 2014. Comparative study of numerical methods for determining Weibull parameters for wind energy potential. Renewable and Sustainable Energy Reviews, 40, 820–825.
  • 8. Barker, A., Bhaskar, P., Anderson, B., Eberle, A. 2021. Potential infrastructure cost savings at hybrid wind plus solar PV plants (No. NREL/TP-5000- 78912). National Renewable Energy Lab.(NREL), Golden, CO (United States).
  • 9. Bilir, L., İmir, M., Devrim, Y., Albostan, A. 2015. An investigation on wind energy potential and small scale wind turbine performance at İncek region–Ankara, Turkey. Energy Conversion and Management, 103, 910–923.
  • 10. Chang, T.P. 2011. Performance comparison of six numerical methods in estimating Weibull parameters for wind energy application. Applied Energy, 88(1), 272–282.
  • 11. Chaurasiya, P.K., Ahmed, S., Warudkar, V. 2018. Study of different parameters estimation methods of Weibull distribution to determine wind power density using ground based Doppler SODAR instrument. Alexandria Engineering Journal, 57(4), 2299–2311.
  • 12. Chow, A., Fung, A.S., Li, S. 2014. GIS modeling of solar neighborhood potential at a fine spatiotemporal resolution. Buildings, 4(2), 195–206.
  • 13. Dale, M. 2013. A comparative analysis of energy costs of photovoltaic, solar thermal, and wind electricity generation technologies. Applied sciences, 3(2), 325–337.
  • 14. De Andrade, C.F., Neto, H.F. M., Rocha, P.A.C., da Silva, M.E.V. 2014. An efficiency comparison of numerical methods for determining Weibull parameters for wind energy applications: A new approach applied to the northeast region of Brazil. Energy conversion and Management, 86, 801–808.
  • 15. De Arce, R., Mahía, R., Medina, E., Escribano, G. 2012. A simulation of the economic impact of renewable energy development in Morocco. Energy Policy, 46, 335–345.
  • 16. Deep, S., Sarkar, A., Ghawat, M., Rajak, M.K. 2020. Estimation of the wind energy potential for coastal locations in India using the Weibull model. Renewable energy, 161, 319–339.
  • 17. Department of Public Expenditure. 2016. The Public Spending Code: E – Technical References. http://www.per.gov.ie/en/project-discount-inflation-rates
  • 18. Echlouchi, K., Ouardouz, M., Bernoussi, A.S. 2017. Urban solar cadaster: application in North Morocco. In 2017 International Renewable and Sustainable Energy Conference (IRSEC),1–7.
  • 19. Edalati, S., Ameri, M., Iranmanesh, M., Tarmahi, H., Gholampour, M. 2016. Technical and economic assessments of grid-connected photovoltaic power plants: Iran case study. Energy, 114, 923–934.
  • 20. El-Houari, H., Allouhi, A., Salameh, T., Kousksou, T., Jamil, A., El Amrani, B. 2021. Energy, Economic, Environment (3E) analysis of WT-PV-Battery autonomous hybrid power plants in climatically varying regions. Sustainable Energy Technologies and Assessments, 43, 100961.
  • 21. Fazelpour, F., Markarian, E., Soltani, N. 2017. Wind energy potential and economic assessment of four locations in Sistan and Balouchestan province in Iran. Renewable Energy, 109, 646–667.
  • 22. Fu, P., Rich, P.M. 2002. A geometric solar radiation model with applications in agriculture and forestry. Computers and electronics in agriculture, 37(1–3), 25–35.
  • 23. George, F. 2014. A comparison of shape and scale estimators of the two-parameter Weibull distribution. Journal of Modern Applied Statistical Methods, 13(1), 3.
  • 24. Ghazi, F.E., Sedra, M.B., Akdi, M. 2021. Energy transition from fossil to renewable sources in North Africa: Focus on the renewable electricity generation in Morocco. International Journal of Energy Economics and Policy, 11(3), 236–242.
  • 25. Jamdade, P.G., Jamdade, S.G. 2012. Analysis of wind speed data for four locations in Ireland based on Weibull distribution’s linear regression model. International Journal of Renewable Energy Research, 2(3), 451–455.
  • 26. Karipoğlu, F., Ozturk, S., Efe, B. 2023. A GISbased FAHP and FEDAS analysis framework for suitable site selection of a hybrid offshore wind and solar power plant. Energy for Sustainable Development, 77, 101349.
  • 27. Kerekes, T., Koutroulis, E., Séra, D., Teodorescu, R., Katsanevakis, M. 2012. An optimization method for designing large PV plants. IEEE Journal of Photovoltaics, 3(2), 814–822.
  • 28. Khalfa, D., Benretem, A., Cheikchouk, N., Herous, L. 2018. Comparative study of wind speed extrapolation methods for sites with different roughness. International Journal of Power and Energy Conversion, 9(3), 205–227.
  • 29. Elamouri M., Ben Amar F. 2008. Wind energy potential in Tunisia. Renew Energy, 33, 758–68.
  • 30. Lehneis, R., Thrän, D. 2023. Temporally and Spatially Resolved Simulation of the Wind Power Generation in Germany. Energies, 16(7), 3239.
  • 31. Li, Z., Cheng, Y., Yuan, Y. 2018. Research on the application of virtual reality technology in landscape design teaching. Educational Sciences: Theory & Practice, 18(5).
  • 32. Mathew, M.S., Kandukuri, S.T., Omlin, C.W.P. 2022. Estimation of wind turbine performance degradation with deep neural networks.
  • 33. Minaeian, A., Sedaghat, A., Mostafaeipour, A., Akbar, A.A. 2017. Exploring economy of small communities and households by investing on harnessing wind energy in the province of Sistan-Baluchestan in Iran. Renewable and Sustainable Energy Reviews, 74, 835–847.
  • 34. Mohammadi, K., Mostafaeipour, A., Sedaghat, A., Shamshirband, S.,Petković, D. 2016. Application and economic viability of wind turbine installation in Lutak, Iran. Environmental Earth Sciences, 75(3), 1–16.
  • 35. Moudrý, V., Beková, A., Lagner, O. 2019. Evaluation of a high resolution UAV imagery model for rooftop solar irradiation estimates. Remote Sensing Letters, 10(11), 1077–1085.
  • 36. Nazir, M.S., Wang, Y., Bilal, M., Sohail, H.M., Kadhem, A.A., Nazir, H.R., Ma, Y. 2020. Comparison of small-scale wind energy conversion systems: economic indexes. Clean Technologies, 2(2), 144–155.
  • 37. Nelson, J.R., Grubesic, T.H. 2020. The use of LiDAR versus unmanned aerial systems (UAS) to assess rooftop solar energy potential. Sustainable Cities and Society, 61, 102353.
  • 38. Nugent, D., Sovacool, B.K. 2014. Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: A critical meta-survey. Energy Policy, 65, 229–244.
  • 39. Ouahabi, M.H., Elkhachine, H., Benabdelouahab, F., Khamlichi, A. 2020. Comparative study of five different methods of adjustment by the Weibull model to determine the most accurate method of analyzing annual variations of wind energy in TetouanMorocco. Procedia Manufacturing, 46, 698–707.
  • 40. Ouali, H.A.L., Raillani, B., El Hassani, S., Moussaoui, M.A., Mezrhab, A., Amraqui, S. 2020. Techno-economic evaluation of very large-scale photovoltaic power plant, case study: Eastern Morocco. In 2020 5th International Conference on Renewable Energies for Developing Countries (REDEC), 1–5.
  • 41. Rajput, P., Tiwari, G.N., Sastry, O.S. 2017. Thermal modelling with experimental validation and economic analysis of mono crystalline silicon photovoltaic module on the basis of degradation study. Energy, 120, 731–739.
  • 42. Redouane, A., Acouetey, P., El Hasnaoui, A., El Harraki, I. 2018. Feasibility Study of Energy Hybrid Systems for Villages of the Southern Moroccan Coastline. In: 2018 6th International Renewable and Sustainable Energy Conference (IRSEC), 1–6.
  • 43. Roca Rubí, Á. 2018. Design and modelling of a large-scale PV plant. Master’s thesis, Universitat Politècnica de Catalunya.
  • 44. Rocha, P.A.C., de Sousa, R.C., de Andrade, C.F., da Silva, M.E.V. 2012. Comparison of seven numerical methods for determining Weibull parameters for wind energy generation in the northeast region of Brazil. Applied Energy, 89(1), 395–400.
  • 45. Saad, N.M., Hamid, J.R.A., Saraf, N.M., Halim, M.A., Idris, A.N., Khalid, N. 2018. Insolation Model from LiDAR-Derived Topographical Surface Models. In 2018 IEEE 8th International Conference on System Engineering and Technology (ICSET), 133–138.
  • 46. Saleh, H., Aly, A.A.E.A., Abdel-Hady, S. 2012. Assessment of different methods used to estimate Weibull distribution parameters for wind speed in Zafarana wind farm, Suez Gulf, Egypt. Energy, 44(1), 710–719.
  • 47. Santos, T., Gomes, N., Freire, S., Brito, M.C., Santos, L., Tenedório, J.A. 2014. Applications of solar mapping in the urban environment. Applied Geography, 51, 48–57.
  • 48. Sliz-Szkliniarz, B., Vogt, J. 2011. GIS-based approach for the evaluation of wind energy potential: A case study for the Kujawsko–Pomorskie Voivodeship. Renewable and Sustainable Energy Reviews, 15(3), 1696–1707.
  • 49. Tar, K. 2008. Some statistical characteristics of monthly average wind speed at various heights. Renewable and Sustainable Energy Reviews, 12(6), 1712–1724.
  • 50. Thirunavukkarasu, M., Sawle, Y. 2021. A comparative study of the optimal sizing and management of off-grid solar/wind/diesel and battery energy systems for remote areas. Frontiers in Energy Research, 9, 752043.
  • 51. Tran, T.T., Smith, A.D. 2018. Incorporating performance-based global sensitivity and uncertainty analysis into LCOE calculations for emerging renewable energy technologies. Applied energy, 216, 157–171.
  • 52. Wiginton, L.K., Nguyen, H.T., Pearce, J.M. 2010. Quantifying rooftop solar photovoltaic potential for regional renewable energy policy. Computers, Environment and Urban Systems, 34(4), 345–357.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b7d58264-65b4-4201-82e1-f9e4a55022c5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.