PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure measures and the minimum size of a representative volume element: 2D numerical study

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper, a numerical study of the size of a representative volume element (RVE) for both the heat flow as well as the linear elasticity problems is presented. A particular two-phase random microstructure is studied and the method is applied to the digital image of reconstructed 2D realization of random media. The minimum size of RVE is deter-mined by the investigation of the convergence of apparent properties as the size of RVE is increasing. Then, two estimates of the minimum RVE size are proposed and it is shown that the estimates are in a good agreement with the results determined by the investigation of the convergence of apparent properties. The minimum size of RVE can be successfully predicted based only on the microstructure morphology. The statistical measures used in this work are: the two-point probability and the lineal-path functions.
Czasopismo
Rocznik
Strony
1060--1086
Opis fizyczny
Bibliogr. 26 poz.
Twórcy
autor
  • Wrocław University of Technology, Institute of Geotechnics and Hydrotechnics, Wrocław, Poland
  • Wrocław University of Technology, Institute of Geotechnics and Hydrotechnics, Wrocław, Poland
Bibliografia
  • 1. Beran, M.J. (1968), Statistical Continuum Theories, Monographs in Statistical Physics and Thermodynamics, Interscience Publ., New York, 424 pp.
  • 2. Drugan, W.J., and J.R. Willis (1996), A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites, J. Mech. Phys. Solids44, 4, 497-524, DOI: 10.1016/0022-5096 (96)00007-5.
  • 3. Feller, W. (1961), An Introduction to Probability Theory and its Applications, Vol. 1, 2nd ed., John Wiley & Sons, New York. FlexPDE 6 (2011),
  • 4. FlexPDE 6 User’s Manual, PDE Solutions Inc., Antioch, USA.
  • 5. Gitman, I.M., H. Askes, and L.J. Sluys (2007), Representative volume: Existence and size determination, Eng. Fract. Mech.74, 16, 2518-2534, DOI: 10.1016/j.engfracmech.2006.12.021.
  • 6. Graham, S., and N. Yang (2003), Representative volumes of materials based on mi-crostructural statistics, Scripta Mater.48, 3, 269-274, DOI: 10.1016/S1359-6462(02)00362-7.
  • 7. Hazanov, S., and C. Huet (1994), Order relationships for boundary conditions effect in heterogeneous bodies smaller than the representative volume, J. Mech. Phys. Solids42, 12, 1995-2011, DOI: 10.1016/0022-5096(94)90022-1.
  • 8. Huet, C. (1990), Application of variational concepts to size effects in elastic heterogeneous bodies, J. Mech. Phys. Solids38, 6, 813-841, DOI: 10.1016/0022-5096(90)90041-2.
  • 9. Janke, W. (2002), Pseudo random numbers: Generation and quality checks. In:J. Grotendorst, D. Marx, and A. Muramatsu (eds.),Quantum Simulations of Complex Many-Body Systems: From Theory to Algorithms, Lecture Notes, John von Neumann Institute for Computing, NIC Series, Vol. 10, 447-458.
  • 10. Kanit, T., S. Forest, I. Galliet, V. Mounoury, and D. Jeulin (2003), Determination of the size of the representative volume element for random composites: statistical and numerical approach, Int. J. Solids Struct.40, 13-14, 3647-3679, DOI: 10.1016/S0020-7683(03)00143-4.
  • 11. Kanit, T., F. N’Guyen, S. Forest, D. Jeulin, M. Reed, and S. Singleton (2006), Apparent and effective physical properties of heterogeneous materials: Representativity of samples of two materials from food industry, Comput. Method. Appl. Mech. Eng.195, 33-36, 3960-3982, DOI: 10.1016/j.cma. 2005.07.022.
  • 12. Khdir, Y.K., T. Kanit, F. Zaïri, and M. Naït-Abdelaziz (2013), Computational ho-mogenization of elastic-plastic composites, Int. J. Solids Struct.50, 18, 2829-2835, DOI: 10.1016/j.ijsolstr.2013.03.019.
  • 13. Lu, B., and S. Torquato (1990), Local volume fraction fluctuations in heterogeneous media, J. Chem. Phys.93, 5, 3452-3459, DOI: 10.1063/1.458827
  • 14. Łydżba, D., and A. Różański (2012), On the minimum size of representative volume element: An n-point probability approach. In:Q. Qian and Y. Zhou (eds.), Harmonising Rock Engineering and the Environment, Taylor & Francis Group, London, 2107-2112.
  • 15. Mathematica (2008), Wolfram Mathematica Tutorial Collection, Wolfram Research Inc., Oxfordshire.
  • 16. Metropolis, N., A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller (1953), Equation of state calculations by fast computing machines, J. Chem. Phys.21, 1087-1092, DOI: 10.1063/1.1699114.
  • 17. Różański, A. (2010), Random composites: representativity, minimum RVE size, effective transport properties, Ph.D. Thesis, Université Lille 1, LML,Ville-neuve d’Ascq, France (UMR CNRS 8107).
  • 18. Różański, A., and D. Łydżba (2011), From digital image of microstructure to the size of representative volume element: B4C/Al composite, Stud. Geotech. Mech. 33, 1, 55-68.
  • 19. Różański, A., D. Łydżba, and P. Jabłoński (2013), Numerical study of the size of representative volume element for linear elasticity problem, Stud. Geotech. Mech.35, 2, 67-81, DOI:10.2478/sgem-2013-0024.
  • 20. Sab, K. (1992), On the homogenization and the simulation of random materials, Eur. J. Mech. A11, 5, 585-607.
  • 21. Stroeven, M., H. Askes, and L.J. Sluys (2004), Numerical determination of representative volumes for granular materials, Comput. Methods Appl. Mech. Eng.193, 30-32, 3221-3238, DOI: 10.1016/j.cma.2003.09.023.
  • 22. Suquet, P. (1987), Elements of homogenization for inelastic solid mechanics. In: E. Sanchez-Palencia and A. Zaoui (eds.), Homogenization Techniques for Composite Media, Lecture Notes in Physics, Vol. 272, Springer, Berlin, 193-278.
  • 23. Torquato, S. (2002), Random Heterogeneous Materials. Microstructure and Macroscopic Properties, Springer, New York.
  • 24. Torquato, S., and G. Stell (1982), Microstructure of two-phase random media. I: The n-point probability functions, J. Chem. Phys.77, 4, 2071-2077, DOI: 10.1063/1.444011.
  • 25. Yeong, C.L.Y., and S. Torquato (1998a), Reconstructing random media, Phys. Rev. E57, 1, 495-506, DOI: 10.1103/PhysRevE.57.495.
  • 26. Yeong, C.L.Y., and S. Torquato (1998b), Reconstructing random media. II. Three-dimensional media from two-dimensional cuts, Phys. Rev. E58, 1, 224-233, DOI: 10.1103/PhysRevE.58.224
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b7d48dd2-14ce-493f-9173-a9c8bf268300
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.