Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Mechanizm pękania stropu i określanie szerokości filarów węgla podczas wydobywania płasko położonych pokładów węgla
Konferencja
POL-VIET 2023 — the 7th International Conference POL-VIET
Języki publikacji
Abstrakty
In underground coal mining, the stability of roadways and gob-side entry depends on the coal pillar width. An unreasonable width of the coal pillar will cause the roadway to be in a dangerous zone of influence of the abutment pressure, leading to severe roadway deformation. This paper studies the fracture mechanism of the hard main roof and reasonable coal pillar width to protect the stability of gob-side entry driving. The research results show that when mining a coal seam under a hard main roof, the console of the main roof on the edge of the coal seam has the form of hinge structure. The great load of the roof layers and the rotation of the console are the main causes leading to the variation of the stress field in the coal seam. According to the development law of the stress field, after the main roof completes the collapse process, the peak of the maximum stress will move deep into the solid coal seam, and on the edge of the coal seam it will form a low-stress zone. Research results from the case of Seam #11 of Khe Cham coal mine, Vietnam show that the gob-side entry will be well stabilized when the narrow coal pillar between it and the boundary of the gob is 4–5 m.
Czasopismo
Rocznik
Tom
Strony
271--280
Opis fizyczny
Bibliogr. 35 poz., tab., wykr., zdj.
Twórcy
autor
- Faculty of Mining, Hanoi University of Mining and Geology, 18 Vien Street, Hanoi 100000, Vietnam
autor
- Faculty of Mining, Hanoi University of Mining and Geology, 18 Vien Street, Hanoi 100000, Vietnam
autor
- Faculty of Mining, Hanoi University of Mining and Geology, 18 Vien Street, Hanoi 100000, Vietnam
autor
- Faculty of Mining, Hanoi University of Mining and Geology, 18 Vien Street, Hanoi 100000, Vietnam
Bibliografia
- 1. Decision on approval for adjusted master plan for Vietnam’s coal industry development to 2020 andvision towrads 2030. 2016, Hanoi, Vietnam, March 14, – 142pp. (in Viet Nam);
- 2. ZUBOV VP, LE QUANG PHUC. Development of resource-saving technology for excavation of flat-lying coal seams with tight roof rocks (on the example of the Quang Ninh coal basin mines). Journal of Mining Institute. 2022, Vol. 257, p. 795–806;
- 3. WANG, K., ZHAO, T., YETILMEZSOY, K., & ZHANG, X. Cutting-caving ratio optimization of fully mechanized caving mining with large mining height of extremely thick coal seam. Advances in Civil Engineering. 2019, Vol. 2019, p. 1-11.;
- 4. WANG, Q., HE, M., YANG, J., GAO, H., JIANG, B., & YU, H. Study of a no-pillar mining technique with automatically formed gob-side entry retaining for longwall mining in coal mines. International Journal of Rock Mechanics and Mining Sciences. 2018, Vol. 110, p. 1-8.;
- 5. QI, F., & MA, Z. Investigation of the roof presplitting and rock mass filling approach on controlling large deformations and coal bumps in deep high-stress roadways. Latin American Journal of Solids and Structures. 2019, 16 pp;
- 6. MA, Z., WANG, J., HE, M., GAO, Y., HU, J., & WANG, Q. Key technologies and application test of an innovative noncoal pillar mining approach: a case study. Energies. 2018, Vol. 11(10), p. 2853;
- 7. ZHAO, H. State-of-the-art of standing supports for gob-side entry retaining technology in China. Journal of the Southern African Institute of Mining and Metallurgy. 2019, Vol. 119(11), p. 891-906.;
- 8. WU, B., WANG, X., BAI, J., WU, W., ZHU, X., & LI, G. Study on crack evolution mechanism of roadside backfill body in gob-side entry retaining based on UDEC trigon model. Rock Mechanics and Rock Engineering. 2019, Vol. 52, p. 3385-3399;
- 9. ZHEN, E., GAO, Y., WANG, Y., & WANG, S. Comparative study on two types of nonpillar mining techniques by roof cutting and by filling artificial materials. Advances in Civil Engineering. 2019, Vol. 2019. https://doi.org/10.1155/2019/5267240;
- 10. Zhang, G. C., Tan, Y. L., Liang, S. J., & Jia, H. G. Numerical estimation of suitable gob-side filling wall width in a highly gassy longwall mining panel. International Journal of Geomechanics. 2018, Vol. 18(8), 04018091.
- 11. ZHANG, G., LIANG, S., TAN, Y., XIE, F., CHEN, S., & JIA, H. Numerical modeling for longwall pillar design: a case study from a typical longwall panel in China. Journal of Geophysics and Engineering. 2018, Vol. 15(1), p. 121-134.
- 12. ESTERHUIZEN, E., MARK, C., & MURPHY, M. M. Numerical model calibration for simulating coal pillars, gob and overburden response. In Proceedings of the 29th international conference on ground control in mining. Morgantown: West Virginia University. 2010, p. 46-57.
- 13. LI, W., BAI, J., PENG, S., WANG, X., & XU, Y. Numerical modeling for yield pillar design: a case study. Rock Mechanics and Rock Engineering. 2015, Vol. 48, p. 305-318.
- 14. SHABANIMASHCOOL, M., & LI, C. C. A numerical study of stress changes in barrier pillars and a border area in a longwall coal mine. International Journal of Coal Geology. 2013, Vol. 106, p. 39-47.
- 15. WANG, H., JIANG, Y., ZHAO, Y., ZHU, J., & LIU, S. Numerical investigation of the dynamic mechanical state of a coal pillar during longwall mining panel extraction. Rock mechanics and rock engineering. 2013, Vol. 46, p. 1211-1221.
- 16. BAI, J. B., SHEN, W. L., GUO, G. L., WANG, X. Y., & YU, Y. Roof deformation, failure characteristics, and preventive techniques of gob-side entry driving heading adjacent to the advancing working face. Rock Mechanics and Rock Engineering. 2015, Vol. 48, p. 2447-2458.
- 17. MOHAMMADI, H., EBRAHIMI FARSANGI, M. A., JALALIFAR, H., & AHMADI, A. R. A geometric computational model for calculation of longwall face effect on gate roadways. Rock Mechanics and Rock Engineering. 2016, Vol. 49, p. 303-314.
- 18. SHEN, W. L., BAI, J. B., LI, W. F., & WANG, X. Y. Prediction of relative displacement for entry roof with weak plane under the effect of mining abutment stress. Tunnelling and Underground Space Technology. 2018, Vol. 71, p. 309-317.
- 19. SHEN, W., XIAO, T., WANG, M., BAI, J., & WANG, X. Numerical modeling of entry position design: a field case. International Journal of Mining Science and Technology. 2018, Vol. 28(6), p. 985-990.
- 20. JIANG, L., ZHANG, P., CHEN, L., HAO, Z., SAINOKI, A., MITRI, H. S., & WANG, Q. Numerical approach for goaf-side entry layout and yield pillar design in fractured ground conditions. Rock Mechanics and Rock Engineering. 2017, Vol. 50, p. 3049-3071.
- 21. ZHANG, G. C., HE, F. L., LAI, Y. H., & JIA, H. G. Ground stability of underground gateroad with 1 km burial depth: a case study from Xingdong coal mine, China. Journal of Central South University. 2018, Vol. 25(6), p. 1386-1398.
- 22. Yu, Y., Bai, J., Wang, X., & Zhang, L. Control of the surrounding rock of a goaf-side entry driving heading mining face. Sustainability. 2020, Vol. 12(7), p. 2623. https://doi.org/10.3390/su12072623
- 23. ZUBOV V.P., THAN VAN DUY & FEDOROV A.S. Technology of underground mining of thick coal seams with low strength properties. Ugol’. 2023, (5), p. 41-49. DOI: 10.18796/0041-5790-2023-5-41-49.
- 24. LE TIEN DUNG, OH JOUNG. Longwall face stability analysis from a discontinuum-Discrete Fracture Network modelling. Tunnelling and Underground Space Technology. 2022, Vol. 124, p. 104480.
- 25. LE TIEN DUNG, NGUYEN CHI THANH, DAO VAN CHI. Estimation of coal and rock mechanical properties for numerical modelling of longwall extraction. Inżynieria Mineralna – Journal of the Polish Mineral Engineering Society. 2020, Vol. 46(2), p. 41-47.
- 26. HAO, L. I. U., ET AL. Reasonable Width of Narrow Coal Pillars Along Gob-side Driving Entries in Gas Outburst Coal Seams: Simulation and Experiment. In: IOP Conference Series: Earth and Environmental Science. IOP Publishing. 2020, p. 052042.
- 27. YU, YANG, ET AL. Control of the surrounding rock of a goaf-side entry driving heading mining face. Sustainability. 2020, Vol 12(7): 2623; https://doi.org/10.3390/su12072623
- 28. LI, LIANGSHAN, ET AL. Pressure Relief and Bolt Grouting Reinforcement and Width Optimization of Narrow Coal Pillar for Goaf-Side Entry Driving in Deep Thick Coal Seam: A Case Study. Minerals. 2022, Vol. 12(10): 1292. https://doi.org/10.3390/min12101292
- 29. SHEN, W. L., GUO, W. B., NAN, H., WANG, C., TAN, Y., & SU, F. Q. Experiment on mine ground pressure of stiff coal-pillar entry retaining under the activation condition of hard roof. Advances in Civil Engineering. 2018. Article ID 2629871, 11 pages https://doi.org/10.1155/2018/2629871;
- 30. WANG, Y., WANG, H., HE, M., WANG, Q., QIAO, Y., & YANG, J. Mine pressure behavior characteristics and control methods of a reused entry that was formed by roof cutting: a case study. Shock and Vibration. 2020, p. 1-15.
- 31. ITASCA. Fast Lagrangian Analysis of Continua User’s Guide; Itasca Consulting Group Inc.: Minneapolis, MN 55401, USA, 2019. https://www.itascacg.com/search;
- 32. LE, Q.P., DAO, V.C. Roof Condition Characteristics Affecting the Stability of Coal Pillars and Retained Roadway. Environmental Science and Engineering. Springer, Cham. 2023, p. 463-477. https://doi.org/10.1007/978-3-031-20463-0_29;
- 33. LE QUANG PHUC. Cause and Solution to Roadway Deformation in Vietnam Underground Coal Mines. Inżynieria Mineralna. 2021, No.2, Vol.1, p. 381-390. http://doi.org/10.29227/IM-2021-02-35;
- 34. LE QUANG PHUC, ZUBOV V.P., PHUNG MANH DAC. Improvement of the Loading Capacity of Narrow Coal Pillars and Control Roadway Deformation in the Longwall Mining System. A Case Study at Khe Cham Coal Mine (Vietnam). Inżynieria Mineralna. 2020, Vol. 1(2), p. 115-122. DOI: 10.29227/IM-2020-02-15;
- 35. Szymanek A., Nowak W. Mechanically activated limestone, Chemical and process engineering, 28,127-137, 2007. ISSN0208-6425 IF 0,394
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b7d3d4b1-aa6f-4d4a-8925-59ca0cd3ced9