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The objective of the research was to create a model which defines the 
relation between a fundamental contact area of a seed and the pressure 
force, water content in a seed and its geometrical dimensions with 
application of artificial neural networks (SSN). Computer program 
Statistica Neural Networks v. 6.0. was used for formation of a neural 
model. Tests were carried out on Roma wheat seed and Dańkowskie 
Złote rye with six various water contents: 0.11 0.15 0.19 0.23 0.28 
0.33 (kg⋅kg-1 dry mass). Caryopses were loaded with eight values of 
compression force – from 41 N to 230 N. Multiplicity of iterations 
was 5. Seed material was moistened to obtain a specific water content. 
Each seed was loaded with compression force with respectively 
growing values: 41N, 68N, 95N, 122N, 149N, 176N, 203N and 230N. 
A four-layer network of Perceptron type with 10 neurons in the first 
and 8 neurons in the second hidden layer was selected as a model 
which the best defines the contact area of grain seeds loaded with 
axial force at various moisture levels. This network has 4 inputs 
(water content, pressure force, thickness and length of caryopses) and 
one output (elementary contact area of rye and wheat seeds). Compar-
ison of the neural model with empirical formulas obtained from non-
linear estimation proved a considerable higher precision of the first 
one. 
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Introduction 
Plant granular material consists of the seed beds of crops which constitute a separate 

group which we include to the wide class of materials generally called loose materials. On 
account of two characteristic influences: existence of static friction and non-elastic colli-
sions and on account of very low energy of thermal movements in comparison to potential 
energy of gravitational field, loose materials are often considered as a separate physical 
state (Ślipek et al., 1999). Behaviour of such type of materials is a sum of relations both 
known and still investigated (Mohsenin, 1970; Jouki et al., 2012; Balasubramanian et al., 
2012; Zare et al., 2013). Their number is so significant that the obtained results of meas-
urements concerning physical properties of loose materials are defined by considerable 
distributions of values (Francik and Frączek, 2001).  
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Still, the area concerning phenomena which take place between particular elements of  
a bed and the structural material is almost unknown. It also concerns determination of the 
value of the contact area, which is indispensable in many cases. We can mention here the 
problem of correct determination of the value of contact strains during a test of seed com-
pression and determination of the external friction force. The size of this area is also partic-
ularly important in case of a discussion on the pressure force of seed mass to the bottom 
and walls of a container. The current research show that friction occurring on the contact 
area of granular material with a flat surface depends mainly on the pressure force and the 
contact area field ‒ thus on the stresses which occur on the contact area. Despite this, only 
some of the research concerning the friction phenomenon included the contact area.  

The contact area may be defined in multiple ways: 
– regular contact area - the total area taken by a seed 
– real contact area - area of a direct contact of bodies. In case of a seed mass it is consid-

ered as a total value of all unit microcontacts with the total area which constitutes only  
a small fraction of the nominal contact area. 

– an elementary contact area - real contact area defined for a single seed. 
In majority of cases in the current research only a nominal contact area was usually con-

sidered. Only some measurements carried out randomly concerned an elementary area 
(Molenda et al., 1995; Frączek et al., 2000; Frączek, 2003; Frączek et al., 2003; Kiełbasa, 
2005; Łukaszuk et al., 2009). It impeded the possibility of application of the obtained re-
sults in practice since a model of the plant seed structure has not been formed and any rela-
tion between an elementary area and determining factors was not defined.  

The research concerning modelling of the seed structure are carried out in a relatively 
low scale (Horabik and Molenda, 2003; Romański, 2004; Romański et al., 2005; Chigarev, 
2013). Thus, their extension seems necessary. It should allow better reflection of real condi-
tions and thus increase precisions of calculations concerning various types of structures: 
tanks, silos, transporting devices etc. It is particularly significant presently when a wide 
choice of modern construction materials requires their proper selection. 

Objective and scope of research 
The objective of the presented research was to create a model which defines relations 

between an elementary contact area of a seed and the pressure force, water content in a seed 
and its geometrical dimensions with the use of artificial neural networks (SSN). 
The following hypothesis was used as a basis for the model: 
 P = f (N, Z, A, B, C)  (1) 

where:   
P  – elementary contact area of a seed, (mm2 ) 
N  – pressure force to the tested seed, (N)  
Z  – water content in a seed, (kg·kg.-1 s.m ) 
A  – thickness of caryopses, (mm) 
B  – width of caryopses, (mm) 
C  – length of caryopses, (mm) 
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Tests were carried out on Roma wheat seed and Dańkowskie Złote rye. Dry seed mate-
rial (0.11 kg·kg s.m.-1) was moistened to the moment water content was achieved on six 
various levels: 0.11; 0.15; 0.19; 0.23; 0.28; 0.33 kg·kg-1 dry mass. Each seed was loaded 
with a compression force with respectively growing values: 41, 68, 95, 122, 149, 176, 203 
and 230 N. Multiplicity of iterations was 5. 

Methodology 
Investigations were divided into two stages: the first one - were the contact area was 

measured and the second one - when approximation of the obtained results with a power 
function was carried out and an optimal artificial neural network was developed (Fig. 1). 

 

 
Figure 1. Schematic diagram of experiment 

Seeds of the most numerous fraction obtained as a result of selection of material on la-
boratory screens was used for measurements. Measurement of the water content in seeds 
was carried out with the use of weighting machine WPE -300 S. 

Tests were carried out on a research stand (Fig. 2) in the Department of Mechanical En-
gineering and Agrophysics of the University of Agriculture in Krakow according to the 
methodology presented in the paper by Frączek et al., (2000). The bottom of the measuring 
casette (2) with dimensions 70 mm 120 mm consisted of a glass plate (8) with the thickness 
of 5 mm with a template on it (4). The cover of the casette (3) was moving which enabled 
the pressure on the granular material. Before each seed was placed in the casette, its dimen-
sions were determined with the use of an electronic caliper. There were three seeds me-
chanically loaded with loads hanging on the lever arm (1) in a measuring casette (in spots 
indicated by a template) at one time. The image of the contact area was registered with the 
use of a camera placed on a tripod under the measuring cassette.  
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Figure 2. Schematic diagram of test stand: 1 – lever; 2 – measuring; 1 – lever; 2 – measur-
ing cassette; 3 – cover; 4 – frame; 5 – investigated material; 6 – mounting a stand;  
7 – carbon paper; 8 – glass plate; 9 – non-shadow illuminators; 10– camera 

A real contact area was determined with the use of a digital image analysis (DIA). Cal-
culations were carried out in Multi Scan program.  

Caryopses were randomly placed in a frame placed in a measuring casette. In order to 
ensure even loading the measurements were carried out on three caryopses placed on the 
triangle tops. A measuring field was illuminated evenly by non-shadow illuminators. Pic-
tures were taken with Nikon D800 camera with FX matrix with 36.3 million pixels in 
7360x4912 resolution and JPEG+RAW format. When the obtained digital image was read 
into Multiscan program single imprints of seeds were cut out maintaining a uniform surface 
area of all underimages which was 121 mm2. Then the underimages were subjected to fur-
ther processing and analysis which aims at such transformation which would enable carry-
ing out a measurement of the contact area on the binary image. Thus, a filter which re-
moves hums and binarization with an upper threshold 100 were respectively applied. 
Measurement of the contact surface area was the last stage on such processed image. This 
measurement has high precision and aims at counting points (pixels) which form a given 
area. The obtained result expressed in the percentages of participation of the grey surface 
area to the surface area of the entire analysed image was calculated into the elementary 
surface area expressed in square millimetres.  

The obtained results served for construction of appropriate neurone network. Neurone 
networks allow development of a successfully operating model without a need to create  
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a theory, and comparison of models using SSN with empirical formulas shows that the first 
ones are more precise (Francik i Frączek, 2001; Fang et al., 2000; Nasirahmadi et al., 
2014.). Application of SSN additionally allows formation of models based on the results of 
measurements abberrated with considerable random errors (processing of noisy patterns) 
which in case of biological materials which are highly variable and in case of difficulties in 
their measurement, is one of the most important advantages (Slipek et al., 2003). Addition-
ally artificial neural networks can generalize the acquired knowledge.  

Formation of a neural model with the use of a computer program Statistica Neural Net-
works v. 6.0 took place in few stages: 
– preparation of data for neural networks - data obtained from measurements (1440 pat-

terns) were randomly divided into three groups: training dataset (720 pattern), validation 
(360 pattern) and testing (360 patterns).  

– creation of models and initial training of artificial neural networks - Automatic Designer 
of Statistica program was used; 100 various types of neural networks were investigated: 
linear networks (LIN), networks with radial base function (RBF) and multi-layer per-
ceptrons (MLP) from which 10 best models were selected; selection was made based on 
the minimal error value for the training dataset; various algorithms of training were ap-
plied: for MLP an algorithm of error back propagation and conjugate gradient for RBF 
networks, training algorithm of k-averages and k-closest neighbours and pseudoinver-
sion, for LIN - psuedoinversion algorithm. 

– training of the best neural networks in order to increase precision of operation of the 
model; the same algorithms as in the initial training were used; 

– selection of the best model – a mean square error ERMS calculated for the validation 
dataset according to the following formula was used as a selection criterion (Dreyfus et 
al. 2005): 
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where:   
ypom  – value of the dependent variable obtained from the measurement 
yssn  – value of the dependent variable generated by artifical neural network 
Nw  – number of patterns in the validation dataset 
 

Precision of the selected SSN was compared to the precision of empirical formulas             
obtained due to non-linear approximation (separately from rye and wheat). The highest 
fidelity of adjustment was obtained for the power function of the format: 
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where:   
P  – elementary contact area, (mm2) 
A  – thickness of caryopses, (mm) 
B  – width of caryopses; (mm) 
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C  – length of caryopses, (mm) 
Z  – water content, (kg·kg-1 s.m.) 
N  – pressure force, (N) 
a, b, c – model constant, (-) 

Research results 
Among the 10 best neural models obtained as a result of the use of Automatic Designer 

there were 3 linear networks, 3 RBF networks and 4 networks of multilayer perceptron type 
(characteristics of the network was presented in table 1).  

Table 1. 
Characteristics of neural models 

Model Network type Number 
of inputs Input variables Number of neurons in layers 

hidden 1 hidden 2 
sn01 LIN 1:1-1:1 1 X2 , 0 0 
sn02 LIN 2:2-1:1 2 X2 , X1 , 0 0 
sn03 LIN 3:3-1:1 3 X2 , X1 , X5 , 0 0 
sn04 MLP 2:2-6-5-1:1 2 X2 , X1 , 6 5 
sn05 RBF 5:5-66-1:1 5 X2 , X1 , X3 , X4 , X5 66 0 
sn06 RBF 5:5-61-1:1 5 X2 , X1 , X3 , X4 , X5 61 0 
sn07 RBF 5:5-67-1:1 5 X2 , X1 , X3 , X4 , X5 67 0 
sn08 MLP 3:3-6-1:1 3 X2 , X1 , X4 6 0 
sn09 MLP 3:3-10-8-1:1 3 X2 , X1 , X4 10 8 
sn10 MLP 4:4-10-8-1:1 4 X2 , X1 , X3 , X5 10 8 

where: X1 - pressure force; X2 - content of H2O; X3 - thickness of A; X4 - width B; X5 - length C 
 
After the stage of initial training the error value ERMS (for data from the validation           

dataset) were within (fig. 3): 
– from 2.63 to 3.92 mm2 for linear networks, 
– from 1.89 to 1.90 mm2 for RBF network, 
– from 1.94 to 2.23 mm2 for MLP network. 

The lowest values were obtained by the following networks: RBF (networks with radial 
base functions) and MLP (multilayer perceptrons). For further training only the following 
networks were qualified: RBF and MLP.  

As a result of the training process of the best models decrease of the error value ERMS for 
the MLP network (Figure 4) and increase of the mean square error value for the RBF             
network was obtained. It was found out that the lowest values ERMS for validation dataset 
were obtained by the four layer perceptron type sn09 (ERMS = 1.86 mm2) and sn10               
(ERMS = 1.82 mm2 ).  
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Figure 3. Error value ERMS for the validation data after initial training 

 
Figure 4. Error value ERMS for RBF and MLP network after training (validation data) 

 
Figure 5 presents the error value ERMS for the best models (neural networks sn09 and 

sn10), for the training, validation and testing dataset. The lowest values of the mean square 
error were obtained for training data slightly higher for the validation and testing data.  

Finally, as a model which the best suits the contact area of the wheat seed loaded with 
axial force at various moisture the sn10 network was selected.  
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Figure 5. Error value ERMS for sn09 and sn10 network after training (validation data)  

The structure of the neural model was presented in figure 6. The sn10 neural network is 
a four-layer perceptron with 10 neurons in the first hidden layer, 8 neurons in the second 
hidden layer and 1 neurone in the output layer. Values of four variables are provided at the 
input: pressure force (X1), water content (X2), thickness (X3) and length (X5) of a caryop-
sis. 

 

 

Figure 6. Sn 10 neural network structure 

Y – elementary 
contact area 

of seed 

INPUT 

Model sn10 
MLP 4 : 4 – 10 – 8 – 1 : 1 

OUTPUT 

X1 – pressure 
force 

X2 – content 
of H2O 

X3 – thickness of 
caryopsis 

X5 – length of 
caryopsis 
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According to the previously presented methodology non-linear estimation was carried 
out, the results of which were presented in table 2 (Statistica v. 6.0 program was used for 
calculations). The obtained credibility of adjustment of empirical formulas to real data is 
quite low – value R2 below 0.9. 

Table 2. 
Approximation test results 

 a b c d R2 

Wheat 
model constants -0.935 0.228 1.783 0.834 

87.97% 
SD 0.226 0.271 0.042 0.018 

Rye 
model constants -1.433 0.242 1.299 0.675 

84.84% 
SD 0.169 0.238 0.48 0.25 

 
Precision of neural network operation was compared to empirical formulas obtained for 

wheat and rye based on the test data (Fig. 7). In all cases error ERMS obtained lower values 
for the neural model sn10. For wheat, mean square error obtained for the empirical formu-
las was slightly higher than SSN. Quite higher difference occurred for rye (2.8 times higher 
error ERMS ). 

 

 
Figure 7. Comparison of neural model with empirical formulas (testing data) 
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Conclusion 
 
1. From among the tested networks, the best was a four-layer network of Perceptron type 

with 10 neurons in the first and 8 neurons in the second hidden layer. This network has 
4 inputs (water content, pressure force, thickness and length of seed) and one output  
(elementary contact surface of rye and wheat seeds). The fact that the architecture of the 
neural model is complex the most probably results from high complexity of the de-
scribed phenomenon. 

2. The obtained SSN model maintained a very high ability of generalization - differences 
of values of ERMS for training data and validation and testing differed only by 18%. 

3. Comparison of the neural model with empirical formulas obtained from non-linear  
estimation proved higher precision of the sn10 neural network. In case of empirical 
formulas the mean square error value ERMS was by 12% higher for Roma wheat and by 
181% higher for Dańkowskie Złote rye in comparison to the values of error for the neu-
ral network.  

4. The sn10 neural network is a better device used for forecasting the value of the external 
friction force which occurs in the processes related to seed transport than the current 
empirical formulas. 
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WYKORZYSTANIE SZTUCZNYCH SIECI NEURONOWYCH  
W MODELOWANIU POWIERZCHNI KONTAKTU ZIARNA ZBÓŻ 

Streszczenie. Celem badań było utworzenie modelu określającego zależności między elementarną 
powierzchnią kontaktu ziarna, a siłą nacisku, zawartością wody w ziarnie oraz jego wymiarami geo-
metrycznymi, przy wykorzystaniu sztucznych sieci neuronowych (SSN). Do tworzenie modelu neu-
ronowego wykorzystano program komputerowy Statistica Sieci Neuronowe v. 6.0. Badania przepro-
wadzono na ziarnie pszenicy Roma oraz żyta Dańkowskie Złote, przy sześciu różnych zawartościach 
wody: 0,11 0,15 0,19 0,23 0,28 0,33 (kg⋅kg-1 s.m.). Ziarniaki obciążano ośmioma wartościami siły 
ściskającej – od 41N do 230N. Krotność powtórzeń wynosiła 5. Materiał ziarnisty nawilżano aby 
uzyskać określoną zawartość wody. Każde ziarno obciążano siłą ściskającą o kolejno rosnących 
wartościach: 41N, 68N, 95N, 122N, 149N, 176N, 203N i 230N. Jako model najlepiej określający 
powierzchnię styku ziarna zbóż obciążanego siłą osiową, przy różnej wilgotności wybrano czterowar-
stwową sieć typu Perceptron o 10 neuronach w pierwszej i 8 neuronach w drugiej warstwie ukrytej. 
Sieć ta posiada 4 wejścia (zawartość wody, siła nacisku, grubość i długość ziarniaka), i jedno wyjście 
(elementarna powierzchnia kontaktu ziarna żyta i pszenicy). Porównanie modelu neuronowego  
z formułami empirycznymi uzyskanymi z estymacji nieliniowej wykazało zdecydowanie większą 
dokładność pierwszego z nich. 

Słowa kluczowe: powierzchnia kontaktu, materiały ziarniste, sztuczne sieci neuronowe 
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