PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Possibility of Using Golden Shower (Cassia Fistula) and Poinciana (Delonix regia) Seeds Oil as Non-Conventional Feedstocks for the Production of Biodiesel in Egypt

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The tree pods and seeds of Cassia fistula (CF) and Delonix regia (DR) were collected from the Faculty of Agriculture garden at Al-Azhar University in Cairo, Egypt, during the spring season of 2019. The physical and chemical aspects of pods and seeds were examined. The percentage of oil and fatty acid compositions were then investigated. The pod weights ranged from 61.34 g in DR to 89.29 g in CF, with pod lengths ranged from 42.26 cm (DR) to 62.64 cm (CF). InCassia fistula, the seed weight per pod, the number of seeds per pod, and the weight of 100 seeds per pod were 12.29 g, 84, and 17.22 g, respectively; whereas in Delonix regia, they were 11.31 g, 23.5, and 34.25 g. The C. fistula had high levels of chlorophyll a and b, as well as total chlorophyll (1.016, 1.025, and 2.041 mg g-1 DW), while D. regia recorded the lowest levels (0.513, 0.228, 0.741 mg g-1 DW). The results also showed that the C. fistula leaves were also heavier than the D. regia leaves, weighing 14.96 g and 5.02 g fresh and dry weight for C. fistula and 10.06 g and 3.87 g fresh and dry weight for D. regia, respectively. The seeds of both plants were chemically tested, with percentages of Lipid, Moisture, Protein, Ash, Fibers, and Total Carbohydrates of 2.11, 10.79, 17.10, 4.95, 5.51, and 59.53 percent for Cassia fistula and 2.13, 6.52, 18.75, 0.37, 13.28, and 58.95 percent for Delonix regia, respectively. Eleven fatty acids were found in both plants seeds oil (lauric, myristic, palmitic, palmitoleic, stearic, oleic, eliadic, linoleic, linolenic, gondoic, and behenic acid). A slight variation was noted in linoleic acid, which was the major component of both oils ranging from 52.17 (CF) to 54.77% (DR). The prediction of the iodine values resulted in 97.6 and 98.8 for Cassia fistula and Delonix regia, respectively, which is a promising model for the production of biodiesel in the future.
Słowa kluczowe
Rocznik
Strony
19--27
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
  • Environment and Bio-agriculture Department, Faculty of Agriculture, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
  • Biochemistry Department, Faculty of Agriculture, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
  • Biochemistry Department, Faculty of Agriculture, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
  • Biochemistry Department, Faculty of Agriculture, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
Bibliografia
  • 1. Abraham A., Chindhanaiselvam A., Subramanian N., Mahendradas D. 2017. Biodiesel from Indian laburnum (Cassia fistula) kernal oil. Energy Sources Part A Recovery Utilization and Environmental Effects, 39(16), 1823–1830.
  • 2. Adejumo B.A., Agboola J.B., Orhevba B.A., Obasa P.A., Simeon M.I. 2019. Extraction and characterisation of oil from Delonix regia seeds. Journal of Engineering, 9(7), 40–43.
  • 3. Akinyede A.I. & Amoo I.A. 2009. Chemical and functional properties of full fat and defatted Cassia fistula seed flours. Pak. J. Nutrition, 8(6), 765–769.
  • 4. Alamu M. 2015. Physiochemical Characterization and Evaluation of Delonix regia Seed Oil. Department of Chemistry, College of Natural Science, Arbaminch University, Ethiopia, 40–45.
  • 5. Al-Menaie H.S., Al-Ragom O., Al-Shatti A., Mathew M.M., Suresh N. 2010. Evaluating the growth performance of Cassia nodosa and Cassia fistula L. seedlings using different potting mixtures. Academic journal of plant sciences, 3(1), 33–36.
  • 6. Amitabye L.R., Theeshan B., Mohammed A.S., Okezie A. 2002. Antioxidant Activities of Phenolic, Proanthocyanidin, and Flavonoid Components in Extracts of Cassia fistula. Journal of Agricultural and Food Chemistry, 50(18), 5042–507.
  • 7. Association of Official Analytical Chemist, (AOAC). 2005. Official methods of analysis 18th edition Arlington, 806–884.
  • 8. Atapour M. & Kariminia H. 2011. Characterization and transesterification of Iranian bitter almond oil for biodiesel production. Applied Energy, (88), 2377–2381.
  • 9. Busso C.A. & Perryman B.L. 2005. Seed weight variation of Wyoming sagebrush in Northern Nevada. Biocell, 29(3), 279–285.
  • 10. Chauhan N., Bairwa R., Sharma K., Chauhan N. 2011. Antimicrobial activity of Cassia fistula Linn. Legumes. International research journal of pharmacy, 2(10), 100–102.
  • 11. Collard F.X. & Blin J. 2014. A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renewable and Sustainable Energy Reviews, 38, 594–608.
  • 12. Edward N.O. & Peggy A.O. 2013. Optimization of biodiesel production from non-edible seeds of Delonix regia. International Journal of Bioresource Technology, 1(1), 1–8.
  • 13. Farooq A., Syeda N.Z., Umer R. 2006. Characterization of Moringa Oleifera Seed Oil From Drought and Irrigated Regions of Punjab, Pakistan. Department of Chemistry, University of Agriculture, Faisalabad, Pakistan. 57(20), 160–168.
  • 14. Gaykhe R.C. & Kadam V.B. 2017. Estimation of Pigments Content in Leaves of Cassia tora Linn. Jprbs, 6(4), 186–190.
  • 15. Goldson Barnaby A., Reid R., Warren D. 2016 a. Antioxidant activity, total phenolics and fatty acid profile of Delonix regia, Cassia fistula, Spathodea campanulata, Senna siamea and Tibouchina granulosa. J Anal Pharm Res, 3(2), 00056.
  • 16. Goldson Barnaby A., Reid R., Rattray V., Williams R., Denny M. 2016b. Characterization of Jamaican Delonix regia and Cassia fistula seed extracts. Biochemistry research international.
  • 17. Halpern S.L. 2005. Sources and consequences of seed size variation in Lupinus perennis (Fabaceae): adaptive and non-adaptive hypotheses. Am. J. Bot., 92(2), 205–213.
  • 18. He H., Wang T., Zhu S. 2007. Continuous production of biodiesel fuel from vegetable oil using supercritical methanol process. The State Key Lab of Chemical Energy, Tsinghua University, Beinjing, China, 30.
  • 19. Hugh P. 2002. Limit to the use of threatened species lists. Trend In Ecology and Evolution, 17(11), 503–507.
  • 20. Khan D. & Javed Zaki M. 2012. Pods and seeds characteristics within a pod crop of an Amaltas tree (Cassia fistula – Caesalpiniaceae): I. insect infestation, number of seeds per pod and the packaging cost. Int. J. Biol. Biotech., 9 (1–2), 31–50.
  • 21. Khan D. & Zulfiqar A. 2013. Maternal investment of biomass in pods, seeds and seed pac kaging in Delonix regia (bojer) rafin (caesalpiniaceae). Int. J. Biol. Res., 1(2), 105–114.
  • 22. Kotb E.A. & Algharib A.M. 2016. Radiation impact and biological variation of castor bean in Egypt as a biofuel crop. Eco. Env. & Cons., 22(1), 495–503.
  • 23. Lin F., Waters C.L., Mallinson R.G., Lobban L.L., Bartley L.E. 2015. Relationships between biomass composition and liquid products formed via pyrolysis. Frontiers in Energy Research, 3, 45.‏
  • 24. Liu L., Ye X.P., Womac A.R., Sokhansanj S. 2010. Variability of biomass chemical composition and rapid analysis using FT-NIR techniques. Carbohydrate Polymers, 81(4), 820–829.‏
  • 25. Luximon-Ramma A., Bahorun T., Soobrattee M.A., Aruoma O.I. 2002. Antioxidant activities of phenolic, proanthocyanidin, and flavonoid components in extracts of Cassia fistula. Agricultural Food Chemical, 8(50), 5042−5047.
  • 26. Martinez I., Gupta D., Obeso J.R. 2007. Allometric allocation in fruits and seed packaging conditions the conflict among selective pressures on the seed size. Evol. Ecology, 21, 517–533.
  • 27. Masood A., Stark K.D., Salem N. 2005. A simplified and efficient method for the analysis of fatty acid methyl esters suitable for large clinical studies. Journal of lipid research, 46(10), 2299–2305.
  • 28. Miria A. & Khan A. 2013. Annual growth rate and carbon storage in select multipurpose trees – A case study. INT J CURR SCI, 6, 40–45.
  • 29. Neelam C., Ranjan B., Komal S., Nootan C. 2011. Review on Cassia fistula. International Journal of Research in Ayurveda & Pharmacy, 2(2), 426–430.
  • 30. Noor C.M., Noor M.M., Mamat R. 2018. Biodiesel as alternative fuel for marine diesel engine applications: A review. renewable and sustainable energy reviews, 94, 127–142.
  • 31. Okey E.N. & Okey P.A. 2013. Optimization of biodiesel production from non-edible seeds of Delonix regia (Gul Mohr). International Journal of Bioresource Technology, 1(1), 1–8.
  • 32. Oyedeji O.A., Azeez L.A., Osifade B.G. 2017. Chemical and nutritional compositions of flame of forest (Delonix regia) seeds and seed oil. South African Journal of Chemistry, 70, 16–20.
  • 33. Penning B.W., Sykes R.W., Babcock N.C., Dugard C.K., Klimek J.F., Gamblin D., Carpita N.C. 2014. Validation of PyMBMS as a high-throughput screen for lignin abundance in lignocellulosic biomass of grasses. BioEnergy Research, 7(3), 899–908.‏
  • 34. Qin S., Sun Y., Meng X., Zhang S. 2010. Production and analysis of biodiesel from non-edible seed oil of Pistacia chinensis. Energy Exploration and Exploitation, 28, 37–46.
  • 35. Sharma A., Kumar A., Jaitak V. 2020. Pharmacological and chemical potential of Cassia fistula L-a critical review. Journal of Herbal Medicine, 100407.
  • 36. Shrivastava N., Datar M., Saxena R.C. 2015. Priliminary physio-chemical and phyto-chemical characterization of powdered material of Cassia fistula fruit. Biomedical and Pharmacology Journal, 3(1), 147–150.
  • 37. Sokal R.R. & Rohlf F.J. 2012. Biometry: the principles and practice of statistics in biological research. 2nd ed. Journal of the Royal Statistical Society, Series A (General), 133(1).
  • 38. Stamenkovic O.S., Stojkovic I.J., Povrenovic D.S., Veljkovic V.B., 2014. Purification technologies for crude biodiesel obtained by alkali-catalyzed Transestrification. Renew. Sustain. Energy Rev., 32, 1–15.
  • 39. Sykes R., Yung M., Novaes E., Kirst M., Peter G., Davis M. 2009. High-throughput screening of plant cell-wall composition using pyrolysis molecular beam mass spectroscopy. Biofuels, 169–183.‏
  • 40. Taha M.G., Yossif H.M., El- Danasoury M.M, Salem R.E., Abd El-Hakim A.F. 2016. Biochemical Studies of Pathogenesis – Related Proteins in Wheat Plants as Affected by Chemical Inducers Treatments. Al-Azhar. J. Agric. Res., 26, 74–88.
  • 41. Tanger P., Field J.L., Jahn C.E., DeFoort M.W., Leach J.E. 2013. Biomass for thermochemical conversion: targets and challenges. Frontiers in plant science, 4, 218.
  • 42. Thawale P.R., Satheesh Babu S.S., Wakode R.R., Singh S.K., Kumar S., Juwarkar A.A. 2011. Biochemical changes in plant leaves as a biomarkerof pollution due to anthropogenic activity. Environ Monit Assess, 177, 527–535.
  • 43. Thirumal M., Surya S., Kishore G. 2012. Cassia fistula Linn – Pharmacognostical, Phytochemical and Pharmacological Review. Critical Review in Pharmaceutical Sciences, 1(1), 48–69.
  • 44. Tsoutsos T., Tournaki S., Gkouskos Z., Paraíba O., Giglio F., García P.Q., Filice M. 2019. Quality characteristics of biodiesel produced from used cooking oil in southern Europe. ChemEngineering, 3(1), 19.
  • 45. Tura A.M., Belay H.K., Merga H. 2015. Physiochemical Characterization and Evaluation of Insecticidal Activities of Delonix regia Seed oil against Termite (Odontotermes obesus), Ticks (Ixodes scapularis) and Cockroach (Blattella germanica). Journal of Natural Sciences Research, 5(15),
  • 46. Vogel K.P., Dien B.S., Jung H.G., Casler M.D., Masterson S.D., Mitchell R.B. 2011. Quantifying actual and theoretical ethanol yields for switchgrass strains using NIRS analyses. BioEnergy Research, 4(2), 96–110.
  • 47. Wang L. & Haiyan Y. 2012. Biodiesel from Siberian apricot (Prunus sibirica L.) seed kernel oil. Bioresource Technology, 112, 355–358.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b7cf56d8-cba4-4240-a5ec-9b06a864ade8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.