Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: According to the available international recommendations, at least one independent verifi cation of the calculations of number of monitor unit (MU) is required for every patient treated by teleradiotherapy. The aim of this study was to estimate the differences of dose distributions calculated with two treatment planning systems: Eclipse (Varian) and Oncentra MasterPlan (Elekta). Materials and methods: The analysis was performed for 280 three-dimensional conformal radiotherapy treatment (3D-CRT) plans with photon beams from Varian accelerators: CL 600C/D X6 MV (109 plans), CL 2300C/D X6 MV (43 plans), and CL 2300C/D X15 MV (128 plans). The mean doses in the planning target volume (PTV) and doses at the isocenter point obtained with Eclipse and Oncentra MasterPlan (OMP) were compared with Wilcoxon matched-pairs signed rank test. Additionally, the treatment planning system (TPS) calculations were compared with dosimetric measurements performed in the inhomogeneous phantom. Results: Data were analysed for 6 MV plans and for 15 MV plans separately, independently of the treatment machine. The dose values calculated in Eclipse were significantly (p <0.001) higher compared to calculations of OMP system. The average difference of the mean dose to PTV was (1.4 ± 1.0)% for X6 MV and (2.5 ± 0.6)% for X15 MV. Average dose disparities at the isocenter point were (1.3 ± 1.9)% and (2.1 ± 1.0)% for X6 MV and X15 MV beams, respectively. The largest differences were observed in lungs, air cavities, and bone structures. Moreover the variation in dosimetric measurements was less as compared to Eclipse calculations. Conclusions: OMP calculations were introduced as the independent MU verification tool with the first action level range equal to 3.5%.
Czasopismo
Rocznik
Tom
Strony
47--53
Opis fizyczny
Bibliogr. 13 poz., rys.
Twórcy
autor
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology Department of Medical Physics W. K. Roentgena 5 Str., 02-781 Warsaw, Poland
- University of Warsaw Faculty of Physics, Biomedical Physics Division Pasteura 5 Str., 02-093 Warsaw, Poland
autor
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology Department of Medical Physics W. K. Roentgena 5 Str., 02-781 Warsaw, Poland
autor
- University of Warsaw Faculty of Physics, Biomedical Physics Division Pasteura 5 Str., 02-093 Warsaw, Poland
autor
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology Department of Medical Physics W. K. Roentgena 5 Str., 02-781 Warsaw, Poland
autor
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology Department of Medical Physics W. K. Roentgena 5 Str., 02-781 Warsaw, Poland
Bibliografia
- 1. European Union. (2013). Council Directive 2013/59/Euratom of 5 December 2013 laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom. Official Journal of the European Union, OJ L13,17.1.2014, 1–73. https://eur-lex.europa.eu/legalcontent/EN/TXT/?uri=OJ:L:2014:013:TOC.
- 2. Knöös, T., Johnsson, S. A., Ceberg, C. P., Tomaszewicz, A., & Nilsson, P. (2001). Independent checking of the delivered dose for high-energy X-rays using a hand-held PC. Radiother. Oncol., 58(2), 201–208.
- 3. Polish Minister of Health. (2011). Regulation of the Minister of Health of 18 February 2011 on the conditions for safe use of ionizing radiation for all types of medical exposure. Dz. U., 2011, no. 51, item 265. (in Polish).
- 4. Haslam, J. J., Bonta, D. V., Lujan, A. E., Rash, C., Jackson, W., & Roeske, J. C. (2003). Comparison of dose calculated by an intensity modulated radiotherapy treatment planning system and an independent monitor unit verifi cation program. J. Appl. Clin. Med. Phys., 4(3), 224–230.
- 5. Mata Colodro, F., Serna Berná, A., & Puchades Puchades, V. (2013). Dosimetric validation of a redundant independent calculation software for VMAT fields. Phys. Med., 29(4), 341–349.
- 6. Fontenot, J. D. (2014). Evaluation of a novel secondary check tool for intensity-modulated radiotherapy treatment planning. J. Appl. Clin. Med. Phys., 15, 207–215.
- 7. Mijnheer, B., Beddar, S., Izewska, J., & Reft, C. (2013). In vivo dosimetry in external beam radiotherapy. Med. Phys., 40(7), 070903.
- 8. Stern, R. L., Heaton, R., Fraser, M. W., Goddu, S. M., Kirby, T. H., Lam, K. L., Molineu, A., & Zhu, T. C. (2011). Verification of monitor unit calculations for non-MRT clinical radiotherapy: Report of AAPM Task Group 114. Med. Phys., 38(1), 504–530.
- 9. Landberg, T., Chavaudra, J., Dobbs, J., Hanks, G., Johansson, K. A., Möller, T., & Purdy, J. (1993). Report 0: Prescribing, recording and reporting photon beam therapy. Journal of the International Commission on Radiation Units and Measurements, 26(1):NP.
- 10. Landberg, T., Chavaudra, J., Dobbs, J., Gerard, J. P., Hanks, G., Horiot, J. C., Johansson, K. A., Möller, T., Purdy, J., Suntharalingam, N., & Svensson, H. (1999).Report 62: Prescribing, recording and reporting photon beam therapy. Journal of the International Commission on Radiation Units and Measurements, 32(1):NP.
- 11. Sievinen, J., Ulmer, W., & Kaissl, W. (2005). AAA Photon dose calculation model in Eclipse. Varian Medical Systems.
- 12. Ahnesjö, A. (1989). Collapsed cone convolution of radiant energy for photon dose calculation in heterogeneous media. Med. Phys., 16(4), 577–592.
- 13. Bulski, W., Chełmiński, K., & Rostkowska, J. (2015). Dosimetry audit of radiotherapy treatment planning systems. Radiat. Prot. Dosim., 165(1/4), 472–476.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b7ce9b3b-dea1-4f34-a589-014d6c0fa7a4