PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Diffusive solute transport in hollow fiber dialyzers is not affected by variable feed viscosity

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Dialyzer clearance (K) for hemodialysis is usually predicted from the mass transfer area product (K0A) provided in manufacturer data sheets without accounting for elevated feed-viscosity when treating blood. The boundary layer model for mass transport across hollow fiber membranes, however, predicts an increase in mass transfer resistance (1/K0) and a decrease in K with increasing feed-viscosity. The effect of increased feed-side viscosity relative to baseline crystalloid viscosity on small solute K and 1/K0 was therefore examined in commercial high- (HF) and low-flux (LF) dialyzers in lab-bench studies using standard dialysis equipment in the normal operating range. Homogeneous colloid solutions and bovine plasma were used to simulate the range of relative viscosities (ηrel) and oncotic pressures expected under in-vivo conditions. Internal filtration (IF) was quantified by a mathematical model to obtain diffusive transport characteristics (K’, 1/K'0). An up to 5-fold increase in ηrel caused a small increase in K and a small decrease in 1/K0 in HF, but not in LF dialyzers. After correction for a small convective contribution by IF, K’ and 1/K'0 remained constant in both LF and HF dialyzers. Diffusive transport characteristics of commercial HF and LF dialyzers are independent of variable feed-side viscosity. This suggests an insignificant contribution of the feed-side boundary layer resistance in dialyzers optimized for operation in hemodialysis. Increasing the feed-side viscosity, however, increases the convective component of dialyzer solute transport because of IF. Diffusive dialyzer clearance predicted from the dialyzer K0A is independent of elevated feed-viscosity.
Twórcy
  • Otto Loewi Research Center, Division of Physiology, Medical University of Graz, Neue Stiftingtalstrasse 6/V, 8010 Graz, Austria
  • Otto Loewi Research Center, Division of Physiology, Medical University of Graz, Graz, Austria
Bibliografia
  • [1] Polaschegg H-D, Levin NW. In: Replacement of Renal Function by Dialysis. Dordrecht: Springer Netherlands; 2004. p. 325–449.
  • [2] Mohajerani F, Clark WR, Ronco C, Narsimhan V. Mass transport in high-flux hemodialysis: application of engineering principles to clinical prescription. Clin J Am Soc Nephrol 2022;17:749–56. https://doi.org/10.2215/CJN.09410721.
  • [3] Michaels AS. Operating parameters and performance criteria for hemodialyzers and other membrane-separation devices. Trans Am Soc Artif Intern Organs 1966;12:387–92.
  • [4] Werynski A, Waniewski J. Theoretical description of mass transport in medical membrane devices. Artif Organs 1995;19:420–47. https://doi.org/10.1111/j.1525-1594.1995.tb02353.x.
  • [5] Saha LK, Van Stone JC. Differences between KT/V measured during dialysis and KT/V predicted from manufacturer clearance data. Int J Artif Organs 1992;15:465–549. https://doi.org/10.1177/039139889201500804.
  • [6] Depner TA, Greene T, Daugirdas JT, Cheung AK, Gotch FA, Leypoldt JK. Dialyzer performance in the HEMO Study: in vivo K0A and true blood flow determined from a model of cross-dialyzer urea extraction. ASAIO J 2004;50:85–93. https://doi.org/10.1097/01.MAT.0000104824.55517.6C.
  • [7] Daugirdas JT, Depner TA, Greene T, Silisteanu P. Solute-solver: a web-based tool for modeling urea kinetics for a broad range of hemodialysis schedules in multiple patients. Am J Kidney Dis 2009;54:798–809. https://doi.org/10.1053/j.ajkd.2009.06.033.
  • [8] Daugirdas JT. Update to solute solver version 2.12. www.ureakinetics.org, 2017 (May 18, 2022).
  • [9] Schneditz D, Daugirdas JT. Quantifying the effect of plasma viscosity on in vivo dialyzer performance. ASAIO J 2020;66:834–40. https://doi.org/10.1097/MAT.0000000000001074.
  • [10] Eloot S, Vierendeels J, Verdonck P. Optimisation of solute transport in dialysers using a three-dimensional finite volume model. Comput Methods Biomech Biomed Eng 2006;9:363–70. https://doi.org/10.1080/10255840601002728.
  • [11] Donato D, Boschetti-de-Fierro A, Zweigart C, Kolb M, Eloot S, Storr M, et al. Optimization of dialyzer design to maximize solute removal with a two-dimensional transport model. J Membr Sci 2017;541:519–28. https://doi.org/10.1016/j.memsci.2017.07.018.
  • [12] Kessler SB, Klein E. Dialysis. Membrane Handbook. 1st ed. New York, USA: Kuwer Academic Press; 2001 [chapter 4].
  • [13] Fournier RL. Basic Transport Phenomena in Biomedical Engineering. 2nd ed. New York: Taylor & Francis Group; 2007.
  • [14] Wang CY, Mercer E, Kamranvand F, Williams L, Kolios A, Parker A, et al. Tube-side mass transfer for hollow fibre membrane contactors operated in the low Graetz range. J Membr Sci 2017;523:235–46. https://doi.org/10.1016/j.memsci.2016.09.049.
  • [15] Wilson EE. A basis for rational design of heat transfer apparatus. Trans Am Soc Mech Engrs 1915;37:47–70.
  • [16] Fernández-Seara J, Uhía FJ, Sieres J, Campo A. A general review of the Wilson plot method and its modifications to determine convection coefficients in heat exchange devices. Appl Therm Eng 2007;27:2745–57. https://doi.org/10.1016/j.applthermaleng.2007.04.004.
  • [17] Schneditz D, Zierler E, Vanholder R, Eloot S. Internal filtration, filtration fraction, and blood flow resistance in high- and low-flux dialyzers. Clin Hemorheol Micro 2014;58:455–69. https://doi.org/10.3233/CH-131802.
  • [18] Donato D, Storr M, Krause B. Design optimization of hollow fiber dialyzers to enhance internal filtration based on a mathematical model. J Membr Sci 2020;598. https://doi.org/10.1016/j.memsci.2019.117690 117690.
  • [19] Sternby JP, Nilsson A, Garred LJ. Diffusive-convective mass transfer rates for solutes present on both sides of a dialyzer membrane. ASAIO J 2005;51:246–51. https://doi.org/10.1097/01.Mat.0000159382.33864.4d.
  • [20] Schneditz D, Zierler E, Jantscher A, Vanholder R, Eloot S. Internal filtration in a high-flux dialyzer quantified by mean transit time of an albumin-bound indicator. ASAIO J 2013;59:505–11. https://doi.org/10.1097/MAT.0b013e31829f0ec9.
  • [21] Lorenzin A, Neri M, Lupi A, Todesco M, Santimaria M, Alghisi A, et al. Quantification of internal filtration in hollow fiber hemodialyzers with medium cut-off membrane. Blood Purif 2018;46:196–204. https://doi.org/10.1159/000489993.
  • [22] Holzer H, Leopold H, Hinghofer-Szalkay H, Stübchen-Kirchner H, Maurer E. Gesamteiweißbestimmung im Serum durch Dichtemessung nach der Biegeschwingermethode. J Clin Chem Clin Biochem 1978;16:391–435. https://doi.org/10.1515/cclm.1978.16.7.391.
  • [23] Price CP, Koller PU. A multicentre study of the new Reflotron system for the measurement of urea, glucose, triacylglycerols, cholesterol, gamma-glutamyltransferase and haemoglobin. J Clin Chem Clin Biochem 1988;26:233–50.
  • [24] Schneditz D, Ribitsch V, Kenner T. Rheological discrimination between native, rigid, and aggregated red blood cells in oscillatory flow. Biorheology 1985;22:209–19. https://doi.org/10.3233/bir-1985-22305.
  • [25] Eloot S, De Wachter D, Van Tricht I, Verdonck P. Computational flow modeling in hollow-fiber dialyzers. Artif Organs 2002;26:590–659. https://doi.org/10.1046/j.1525-1594.2002.07081.x.
  • [26] Runge TM, Briceño JC, Sheller ME, Moritz CE, Sloan L, Bohls FO, et al. Hemodialysis: evidence of enhanced molecular clearance and ultrafiltration volume by using pulsatile flow. Int J Artif Organs 1993;16:645–52. https://doi.org/10.1177/039139889301600904.
  • [27] Lim KM, Shim EB. Computational assessment of the effects of a pulsatile pump on toxin removal in blood purification. Biomed Eng Online 2010;9:31. https://doi.org/10.1186/1475-925X-9-31.
  • [28] Rodrigues C, Rodrigues M, Semiao V, Geraldes V. Enhancement of mass transfer in spacer-filled channels under laminar regime by pulsatile flow. Chem Eng Sci 2015;123:536–41. https://doi.org/10.1016/j.ces.2014.11.047.
  • [29] Nagarani P, Sebastian BT. Dispersion of a solute in pulsatile non-Newtonian fluid flow through a tube. Acta Mech 2013;224:571–85. https://doi.org/10.1007/s00707-012-0753-6.
  • [30] Zierenberg JR, Fujioka H, Cook KE, Grotberg JB. Pulsatile flow and oxygen transport past cylindrical fiber arrays for an artificial lung: computational and experimental studies. J Biomech Eng - TASME 2008;130. https://doi.org/10.1115/1.2907752 031019.
  • [31] Renkin EM. The relation between dialysance, membrane area, permeability and blood flow in the artificial kidney. ASAIO J 1956;2:102–15.
  • [32] Bosch JP, Lew SQ, Barlee V, Mishkin GJ, von Albertini B. Clinical use of high-efficiency hemodialysis treatments: long-term assessment. Hemodial Int 2006;10:73–81. https://doi.org/10.1111/j.1542-4758.2006.01178.x.
  • [33] Cokelet GC. Rheology and tube flow of blood. Handbook of bioengineering. 1st ed. New York: MacGraw-Hill Book Company; 1987 [chapter 14].
  • [34] Waniewski J, Poleszczuk J, Pietribiasi M, Debowska M,Wojcik-Zaluska A, Zaluska W. Impact of solute exchange between erythrocytes and plasma on hemodialyzer clearance. Biocybern Biomed Eng 2020;40:265–76. https://doi.org/10.1016/j.bbe.2019.04.003.
  • [35] Nanne EE, Aucoin CP, Leonard EF. Shear rate and hematocrit effects on the apparent diffusivity of urea in suspensions of bovine erythrocytes. ASAIO J 2010;56:151–216. https://doi.org/10.1097/MAT.0b013e3181d4ed0f.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b7c187fb-4bae-463e-8c96-be6f7acc62a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.