PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Using MCDM methods to optimise machine learning decisions for supply chain delay prediction: a stakeholder-centric approach

Treść / Zawartość
Identyfikatory
Języki publikacji
EN
Abstrakty
EN
Background: This study addresses challenges faced by supply chain stakeholders who lack expert knowledge in making decisions related to Machine Learning. It introduces a novel use of Multi-Criteria Decision-Making as an evaluation mechanism for different classifiers, aiding stakeholders in selecting appropriate Machine Learning models to predict supply chain delays. Methods: The proposed methodology involves applying classifiers (Decision Tree, Bagging, AdaBoost, Random Forest) and evaluating them using quantitative and qualitative metrics. MCDM methods (TOPSIS, MARCOS, COCOSO, MABAC) rank these Machine Learning models, facilitating accessible decision-making for stakeholders. A pharmaceutical industry case study is employed to validate the approach, utilizing Python for analysis. Results: The case study results confirm the effectiveness of the proposed approach, combining Multi-Criteria Decision-Making with Machine Learning in order to facilitate stakeholder decisions on suitable algorithms for predicting supply chain delays. The Random Forest classifier is identified as the most balanced option in the context of the case study, and a clear rationale can be provided in support of or against each option through the comparison of metrics, validating the approach's practical applicability and effectiveness. Conclusions: The combination of Multi-Criteria Decision-Making with Machine Learning provides a significant advancement in empowering stakeholders in supply chain management, particularly those lacking in-depth Machine Learning expertise. This approach enhances decision-making in model selection and has the potential to improve supply chain efficiency.
Czasopismo
Rocznik
Strony
175--189
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Institute of International Business and Economics, Department of Logistics, Poznań University of Economics and Business, Poland
  • School of Computing and Engineering, Department of Computer Science, University of Huddersfield, United Kingdom
Bibliografia
  • 1. Abdulla, A., Baryannis, G., & Badi, I. (2019). Weighting the key features affecting supplier selection using machine learning techniques. In 7th International Conference on Transport and Logistics (pp. 17-20).
  • 2. Abdulla, A., Baryannis, G., & Badi, I. (2023). An integrated machine learning and MARCOS method for supplier evaluation and selection. Decision Analytics Journal, 9, 100342. https://doi.org/10.1016/j.dajour.2023
  • 3. Akinsola, J. E. T., Awodele, O., Kuyoro, S. O., & Kasali, F. A. (2019). Performance evaluation of supervised machine learning algorithms using multi-criteria decision-making techniques. In International Conference on Information Technology in Education and Development (ITED) (pp. 17-34).
  • 4. Anholcer, M., Hinc, T., & Kawa, A. (2019). Losses in transportation—Importance and methods of handling. In A. Kawa & A. Maryniak (Eds.), SMART Supply Network (pp. 111–128). Springer. https://doi.org/10.1007/978-3-319-91668-2_6
  • 5. Antoniou, G., Papadakis, E., & Baryannis, G. (2022). Mental health diagnosis: a case for explainable artificial intelligence. International Journal on Artificial Intelligence Tools. 31(03), 2241003. https://doi.org/10.1142/S0218213022410032
  • 6. Baniecki, H., Kretowicz, W., Piatyszek, P., Wisniewski, J., & Biecek, P. (2021). dalex: Responsible Machine Learning with Interactive Explainability and Fairness in Python. Journal of Machine Learning Research, 22(214).
  • 7. Baryannis, G., Dani, S., Validi, S., & Antoniou, G. (2019). Decision Support Systems and Artificial Intelligence in Supply Chain Risk Management. In G. Zsidisin & M. Henke (Eds.), Revisiting Supply Chain Risk (pp. 55-78). Springer, Cham. https://doi.org/10.1007/978-3-030-03813-7_4
  • 8. Breiman, L. (2001). Random forests. Machine learning, 45, 5-32. https://doi.org/10.1023/A:1010933404324
  • 9. Brintrup, A., Baryannis, G., Tiwari, A., Ratchev, S., Martinez-Arellano, G., & Singh, J. (2023). Trustworthy, responsible, ethical AI in manufacturing and supply chains: synthesis and emerging research questions. arXiv preprint arXiv:2305.11581
  • 10. Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1), 119-139. https://doi.org/10.1006/jcss.1997.1504
  • 11. Hansen, J., & Quinon, P. (2023). The importance of expert knowledge in big data and machine learning. Synthese, 201(35). https://doi.org/10.1007/s11229-023-04041-5
  • 12. Hwang, C.-L., & Yoon, K. (1981). Multiple Attribute Decision Making: Methods and Applications – A State of the Art Survey. Springer Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-48318-9
  • 13. Jafarzadeh, H., Mahdianpari, M., Gill, E., Mohammadimanesh, F., i Homayouni, S. (2021). Bagging and Boosting Ensemble Classifiers for Classification of Multispectral, Hyperspectral and PolSAR Data: A Comparative Evaluation. Remote Sensing, 13(21), 4405. https://doi.org/10.3390/rs13214405
  • 14. Jijo, B. T., & Abdulazeez, A. M. (2021). Classification based on decision tree algorithm for machine learning. Journal of Applied Science and Technology Trends, 2(1), 20–28. https://doi.org/10.38094/jastt20165
  • 15. Khan, M. M., Bashar, I., Minhaj, G. M., Wasi, A. I., & Hossain, N. U. I. (2023). Resilient and sustainable supplier selection: An integration of SCOR 4.0 and machine learning approach. Sustainable and Resilient Infrastructure, 8(5), 453-469. https://doi.org/10.1080/23789689.2023.2165782
  • 16. Kizielewicz, B., Shekhovtsov, A., & Sałabun, W. (2023). Pymcdm-The universal library for solving multi-criteria decision-making problems. SoftwareX, 22, 101368. https://doi.org/10.1016/j.softx.2023.101368
  • 17. Kosasih, E. E., Papadakis, E., Baryannis, G., & Brintrup, A. (2024). A review of explainable artificial intelligence in supply chain management using neurosymbolic approaches. International Journal of Production Research, 62(4), 1510-1540. https://doi.org/10.1080/00207543.2023.2281663
  • 18. Kou, G., Lu, Y., Peng, Y., & Shi, Y. (2012). Evaluation of classification algorithms using MCDM and rank correlation. International Journal of Information Technology & Decision Making, 11(01), 197-225. https://doi.org/10.1142/S0219622012500095
  • 19. Kozak, J. (2019). Decision tree and ensemble learning based on ant colony optimization. Springer.
  • 20. Lolla, R., Harper, M., Lunn, J., Mustafina, J., Assi, J., Kim Loy, Ch., & Al-Jumeily OBE, D. (2023). Machine Learning techniques for predicting risks of late delivery. In Y.B. Wah, M.W. Berry, A. Mohamed, & D. Al-Jumeily (Eds.), Data Science and Emerging Technologies. DaSET 2022. Lecture Notes on Data Engineering and Communications Technologies, Vol. 165 (pp. 343-356). Singapore: Springer. https://doi.org/10.1007/978-981-99-0741-0_25
  • 21. Omar, M, & Baryannis, G. (2020). Semi-automated development of conceptual models from natural language text. Data & Knowledge Engineering, 127, 101796 https://doi.org/10.1016/j.datak.2020.101796
  • 22. Pamučar, D., & Ćirović, G. (2015). The selection of transport and handling resources in logistics centers using Multi-Attributive Border Approximation area Comparison (MABAC). Expert Systems with Applications, 42(6), 3016-3028. https://doi.org/10.1016/j.eswa.2014.11.057
  • 23. Sarbas, P., Sanoob, K. S., Sravan, K., Hafiz, V. S., Thomas, A., Panicker, V. V., & Gopakumar, G. (2023). Development of predictive models for order delivery risk in a Supply Chain: A Machine Learning approach. In X. Li, M. M. Rashidi, R. S. Lather, & R. Raman (Eds.), Emerging Trends in Mechanical and Industrial Engineering (pp. 571-581). Singapore: Springer. https://doi.org/10.1007/978-981-19-6945-4_43
  • 24. Stević, Ž., Pamučar, D., Puška, A., & Chatterjee, P. (2020). Sustainable supplier selection in healthcare industries using a new MCDM method: Measurement of alternatives and ranking according to COmpromise solution (MARCOS). Computers & Industrial Engineering, 140, 106231. https://doi.org/10.1016/j.cie.2019.106231
  • 25. Vidal, G. H. de P., Caiado, R. G. G., Scavarda, L. F., Ivson, P., & Garza-Reyes, J. A. (2022). Decision support framework for inventory management combining fuzzy multicriteria methods, genetic algorithm, and artificial neural network. Computers & Industrial Engineering, 174, 108777. https://doi.org/10.1016/j.cie.2022.108777
  • 26. Wani, D., Singh, R., Khanapuri, V. B. & Tiwari, M. K. (2022). Delay prediction to mitigate E-commerce supplier disruptions using voting mechanism. IFAC-PapersOnLine, 55(10), 731-736. https://doi.org/10.1016/j.ifacol.2022.09.495
  • 27. Wyrembek M. (2023). The application of AdaBoost.M1 based on Ant Colony Optimization to classify the risk of delay in the pharmaceutical supply chain. LogForum, 19 (2), 263-275, http://doi.org/10.17270/J.LOG.2023.837
  • 28. Yazdani, M., Zarate, P., Kazimieras Zavadskas, E., & Turskis, Z. (2019). A combined compromise solution (CoCoSo) method for multi-criteria decision-making problems. Management Decision, 57(9), 2501-2519. https://doi.org/10.1108/MD-05-2017-0458
  • 29. Zheng, G., Kong, L., & Brintrup, A. (2023). Federated machine learning for privacy-preserving, collective supply chain risk prediction. International Journal of Production Research, 61(23), 8115-8132. https://doi.org/10.1080/00207543.2022.2164628
  • 30. Ziemba, P., Becker, J., Becker, A., et al. (2023). Framework for multi-criteria assessment of classification models for the purposes of credit scoring. Journal of Big Data, 10 (94). https://doi.org/10.1186/s40537-023-00768-7
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Identyfikator YADDA
bwmeta1.element.baztech-b7c0bd23-14a1-4de1-b18d-c922443e45d4