PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Turbinowy silnik parogazowy w wielopaliwowych i wielofunkcyjnych systemach energetycznych

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
Rocznik
Tom
Strony
1--157
Opis fizyczny
Bibliogr. 121 poz., rys., wykr.
Twórcy
  • Politechnika Łódzka. Wydział Mechaniczny, Instytut Maszyn Przepływowych
Bibliografia
  • [1] Agren N.D.: Advanced Gas Turbine Cycles with Water-Air Mixtures as Working Fluid, 2000, PhD Thesis, Royal Institute of Technology Dept. of Chemical Engineering / Energy Processes, Stockholm.
  • [2] Agren N.D., Westermark M.O., Bartlett M.A., Lindguist T.: First Experiments on an Evaporative Gas Turbine Pilot Plant – Water Circuit Chemistry and Humidification Evaluation, 2000, ASME Paper No. 2000-GT-168.
  • [3] Ainley D.G.: Internal Cooling for Turbine Blades, Aeronautical Research Council R and M 3013, 1957.
  • [4] Bartlett M.A., Westermark M.: A Study of Humidified Gas Turbines for Short-Term Realization in Midsized Power Generation – Part I: Nonintercooled Cycle Analysis, 2005, Journal of Engineering for Gas Turbines and Power, January 2005, ss. 91-99.
  • [5] Bartlett M.A., Westermark M.: A Study of Humidified Gas Turbines for Short-Term Realization in Midsized Power Generation – Part II: Intercooled Cycle Analysis, 2005, Journal of Engineering for Gas Turbines and Power, January 2005, ss. 100-108.
  • [6] Bartlett M., Westermark M.: Experimental Evaluation of Air Filters and Metal Ion Migration in Evaporative Gas Turbine, 2004, ASME Paper No. JPGC 2001/PWR – 19119.
  • [7] Bednarek S., Porochnicki J.: Straty brzegowe w turbinowej palisadzie łopatkowej pod wpływem odsysania i domieszania strug, 1987, Archiwum Budowy Maszyn, tom XXXIV, Zeszyt 4, ss. 381-402.
  • [8] Bohn D.: SFB 561: Timing for 65% CC Efficiency with an Air-Cooled GT, 2006, Modern Power Systems, September 2006, ss. 25-29.
  • [9] Bolland O., Stadhaas J.F.: Comparative Evaluation of Combined Cycle and Gas Turbine Systems with Water Injection, Steam Injection and Recuperation, Journal of Engineering for Gas Turbine and Power, 117, 1995, ss. 138-147.
  • [10] Bhargava R., Bianchi M., Peretto A., Spina P.R.: A Feasibility Study of Existing Gas Turbines for Recuperated, Intercooled and Reheated Cycle. Journal of Engineeging for Gas Turbines and Power, July 2004, ss. 531-544.
  • [11] Boyce M.P.: Gas Turbine Engineering Handbook, Sec. Ed., 2002, Gulf Prof. Publ.
  • [12] Cataldi G.: Dry-Cooling for Water Recovery in Humidified Gas Turbines: Cycles, 2001, Master thesis, Royal Institute of Technology, Department of Chemical Engineering and Technology / Energy Processes, Stockholm, SE-1004 Sweden.
  • [13] Chmielniak T.J., Rusin A., Ćwiertnia K.: Turbiny gazowe. Wyd. Ossolineum Wrocław 2001.
  • [14] Chodkiewicz R., Porochnicki J.: Hoheffektive Energie Systeme fuer die Salpetersure Anlagen. VDI Berichte Nr 1457, 1999, ss. 249-258.
  • [15] Chodkiewicz R., Porochnicki J., Świrski J.: Analysis of Retrofit and/or Repowering of Older Coal Fuelled Steam Power Units of 120 MW Output by Means of Gas Turbine Sets. Proceedings of the POWER-GEN Europe 1999, Frankfurt – June 1999.
  • [16] Chodkiewicz R., Porochnicki J., Potapczyk A., Sebesta J.: Ekonomiczeskije i ekologiczeskije efekty sowmiestnowo proizwodstwa azotnoj kisłoty elektriczeskoj i tieplowoj enrgiji s ispolzowanijem parogazowych tiechnologij. Chimiczeskoje i nieftogazowoje maszinostrojenije, No. 12 2000, ss. 9-13.
  • [17] Chodkiewicz R., Porochnicki J., Donevski B., Krzton J.: Repowering of 225 MW steam power units at fuel costs in Poland and Macedonia. Proceedings of the POWER-GEN Europe 2000, Helsinki, 20-22 czerwca 2000.
  • [18] Chodkiewicz R., Porochnicki J., Krztoń J., Donevski B.: Turbina gazowa z rekuperacją ciepła w elektrociepłowniach parowych (na przykładzie modernizacji bloku 225 MW), Konf. Naukowo-Techniczna – Elektrociepłownie Gazowo-Parowe, EGP 2000, Poznań-Kiekrz. 11-12 grudnia 2000.
  • [19] Chodkiewicz R., Porochnicki J.: Turbina gazowa z rekuperacja ciepła w kombinowanych procesach gazowo-parowych dla wytwarzanie energii elektrycznej i ciepła użytkowego, Zespołowa Nagroda Badawcza Siemensa, Warszawa 6.05.2000.
  • [20] Chodkiewicz R., Donevski B., Krysiński J., Krztoń J., Porochnicki J.: Recuperated Gas Turbine Integrated with the PFBC Combined Cycle Power Plant, ASME-ZSITS International Thermal Science Seminar, Bleed, Slovenia, ISBN 962-6353-27-6, ss. 11-14 June 2000.
  • [21] Chodkiewicz R., Porochnicki J.: Recuperated Gas Turbine as Topping Combustor for PFBC Power Plant, COMPOWER 2000, Gdańsk, 23-24 November 2000, ss. 103-110.
  • [22] Chodkiewicz R., Porochnicki J., Kaczan B.: Steam-Gas Condensing Turbine System for Power and Heat Generation Presented at the International Gas Turbine and Aeroengine Congress and Exhibition New Orleans June 4-7, 2001, 2001-GT-97.
  • [23] Chodkiewicz R., Krysiński J., Porochnicki J.: A Recuperated Gas Turbine Incorporating External Heat Sources In the Combined Gas-Steam Cycle, Journal of Engineering for Gas Turbines and Power, April 2002, Vol. 124, s. 263-269.
  • [24] Chodkiewicz R., Porochnicki J., Gruszczyński J., Rostkowski R.: Steam-Gas Condensing Turbine in the Dual-Fuel Arrangement with a Circulating Fluidized Bed Boiler, ASME Paper No. GT-2002-30164, 2002.
  • [25] Chodkiewicz R., Porochnicki J., Gruszczyński J., Rostkowski R.: Steam Injection Gas Turbine with Lowered Outlet Pressure in Dual-Fuel Energy Systems, 2002, VDI-Berichte 1714, ss. 143-154.
  • [26] Chodkiewicz R. i zespół: Sprawozdanie z realizacji projektu badawczego nr rejestracyjny 8 T10B 065 21 Obiegi silnika turboparogazowego z kondensacją i rekompresją gazów wylotowych, Prace IMP PŁ Nr 1497 Łódź październik 2003.
  • [27] Combined Heat and Power: Avedore 2 sets New bench-mark for efficiency, flexibility and environmental impact, MPS, January 2000, ss. 25-33.
  • [28] Coward H.F., Jones G.W.: Bureau of Mines Bull 1952, Limits of flammability of gases & vapors, Bulletin 503.
  • [29] Day C.R.B., Oldfield M.L.G., Lock G.D.: Aerodynamic Performance of an Annular Cascade of Film Cooled Nozzle Guide Vanes Under Engine Representative Conditions, Experiments in Fluids, 1999.
  • [30] De Ruyck J., Bram S., Allard G: Revamp Cycle: a New Evaporative Cycle without Saturation Tower, ASME Paper No. 96-GT-361, 1996.
  • [31] Domeracki W.F., Dowdy T.E., Bachovchin D.M.: Topping Combustor Status for Second Generation Pressurized Fluidized Bed Cycle Application, Journal of Eng. for Gas Turbines and Power, January 1997, Vol. 119, ss. 27-38.
  • [32] Eckhardt D.: Advanced Gas Turbine Technology – a Challenge for Science and Industry, CMP Turbomachinery No. 128 Vol. I, SYMKOM’05, ss. 167-178.
  • [33] El Masri M.A.: Exergy Analysis of Combined Cycles – Part I: Air Cooled Bryton-Cycle Gas Turbines, Journal of Engineering for Gas Turbine and Power, 207, 1988, ss. 31-47.
  • [34] Evans R.L., Avastasiou R.B.: On the Performance of Pressurized Fluidized Bed Combined Cycles for Power Generation, 1985. Proc. Inst Mech. Engrs., Vol. 199, No. A12, Mech. E., s. 45-51.
  • [35] Frutchi H.V.: Highest efficiences for electrical power generation with combined cycle plants, ABB Review 3/1990, s. 12-18.
  • [36] Gambini M., Gruiozzi G.L., Vellini M.: H2/O2 Cycles: Thermodynamic Potentialities and Limits”, Journal of Engineering for Gas Turbines and Power, July 2005 Vol. 127, s. 553-563.
  • [37] Gundlach W.R.: Maszyny Przepływowe cz. 1, PWN, Warszawa 1976.
  • [38] Gundlach W., Porochnicki J.: Ueber einige Forschungsergebnisse auf dem Gebiet der Aerodynamikaxialer Schaufelgitter, 1984, Wissenschaftliche Zeitschr. der TU Dresden, Heft 4 (1984), ss. 269-274.
  • [39] Grilli P.G., Bauer F.: Kohlekraftwerke: Deutsche und internationale Entwicklungen und Forschungsprogramme. XXXVI Kraftwerke Colloquium.
  • [40] Górski J., Yantovski E.: New Opportunities of a Reduction of the Carbon Dioxide Emission from Power Plants, Proceedings of the Second International Scientific Symposium on Technical, Economical and Environmental Aspects of Combined Cycle Power Plants – COMPOWER 2000, Gdansk, 23-24 November 2000.
  • [41] Hansen S., Jansen S.E.: Hybrid units at Map Ta Phut are first of kind, Modern Power Systems. August 2000, ss. 33-39.
  • [42] Hartsel J.E.: Prediction of Effects of Mass-Transfer Cooling on the Blade-Row Efficiency of Turbine Airfoils, AIAA Paper 72-11, 1972.
  • [43] Hobler T.: Ruch ciepła i wymienniki, WNT, Warszawa 1976, s. 384.
  • [44] Hongguang Jin, Shien Sun, Wei Han: Proposal of a Novel Multifunctional Energy System for Cogeneration of Coke, Hydrogen, and Power, Journal of Engineering for Gas Turbines and Power, September 2009, Vol. 131, 052001 ss. 1-8.
  • [45] Holland M.J. and Thake T.F.: Rotor Blade Cooling in High Pressure Turbines, AIAA J. of Aircraft, 17, No. 6, 1980, ss. 412-418.
  • [46] Horlock J.H.: Axial Flow Turbines, Butterworth, London 1966.
  • [47] Horlock J.H., Watson D.T, Jones T.V.: Limitations on Gas Turbine Performance Imposed by Large Turbine Cooling Flows, Transactions of the ASME, Journal of Engineering for Gas Turbine and Power, July 2001, Vol. 123, ss. 487-494.
  • [48] Horlock J.H., Torbidoni L.: Calculation of Cooled Turbine Efficiency, Journal of Engineering for Gas Turbines and Power, January 2008, Vol. 130, 011703 ss. 1-5.
  • [49] Imwinkelried B.: ABB’s Advanced Gas Turbines GT-24/GT-26: How the Most Efficient Gas Turbine Family was tested and Validated in a 4-Year Programme. Technical Paper Presented at PowerGen’94 AMERICAS, Dec. 7-9, Orlando, FL.
  • [50] Jackson J.B.A., Neto A.C.: Whellens, Graz Turbine Performance Using Carbon Dioxide as Working Fluid in Closed Cycle Operation, ASME, 2000-GT-153.
  • [51] Jarosiński J.: Techniki czystego spalania, WNT 1996, s. 115.
  • [52] Jericha H., Sanz W., Woisetschilaeger J., Fesharaki M.: CO2 – Retention Capability of CH4/O2 – Fired Gratz Cycle, CIMAC 1995, G07.
  • [53] Jericha H., Feskaraki M.: The Graz Cycle - 1500C Max temperature Potential H2-O2 Firing, 1995, ASME COGEN TURBO POWER’95, Vienna, 95-CTP-79.
  • [54] Jericha H., Fesharaki M., Lukasser A., Takesh H.: Graz-Cycle – eine Innovation zur COw-Minderung, BWK Bd. 50(1998), No. 10, ss. 30-34.
  • [55] Jericha H., Gottlich E.: „Conceptual Design for an Industrial Prototype Graz Cycle Power Plant”, ASME, GT-2002-30118.
  • [56] Jericha H., Götlich E., Sanz W., Heitner F.: Design Optimixation of Graz Cycle Prototype Plant 2004, Vol. 126, ss. 733-740.
  • [57] Santz W., Jericha H., Bauer B., Götlich E.: Qualitative and Quantitative Comparison of Two Promising Oxy-Fuel Power Cycles for CO2 Capture, Journal of Engineering for Gas Turbines and Power, July 2009, Vol. 131, 031702 ss. 1-11.
  • [58] Jericha H., Sanz W., Götlich E.: Design Concept for Large Output Graz Cycle Gas Turbines”, Journal of Engineering for Gas Turbines and Power, January 2008, Vol. 130, 011701 ss. 1-10.
  • [59] Jones T.V.: Definition of Heat Transfer Coefficients in the Turbine Situation, Turbomachinery-Latest Developments in a Changing Scene, ASME Paper No. C 423/046, 1991.
  • [60] Kaczan B.: Program do obliczania parametrów termodynamicznych gazów, IMP PŁ 1997.06.
  • [61] Kaczan B.: Wykres h-s. Program do wizualizacji procesów termodynamicznych, IMP PŁ 1997.04.
  • [62] Kallmeyer S., Schippers K.: Tendenzen in der Energie- und Kraftwerkstechnik aus der Sicht des Betreibers. VDI Berichte 1495 (1999), ss. 33-44.
  • [63] Kather A.: Etwicklungen und Perspektiven der verschiedenen fossilgefeuerten Kraftwerkstechnologien. VDI-GET-Tagung, Entwicklungslinien der Energietechnik, 04/05. September 2002, 10 seinten.
  • [64] Kavanagh R.M., Parks G.T.: A Systematic Comparison and Multi-Objetive Optimization of Humid Power Cycles – Part II: Economics, Journal of Engineering for Gas Turbines and Power, July 2009, Vol. 131, 041701 ss. 1-10.
  • [65] Kays W.M. and Crawford M.E.: Convective Heat and Mass Transfer 3rd Ed., McGraw-Hill, New York 1993.
  • [66] Keller A., Spangenberg C.: Operating Experience with a Cheng Cycle Unit, VGB Power Techn. November 1998, ss. 16-22.
  • [67] Konorski A.: Zagadnienia termodynamiki pary wilgotnej, Wrocław – Warszawa – Kraków, Ossolineum, 1992.
  • [68] Kraemer W.: Die Druckwirbelachit auf der Schelle in die Zukauft – PEFBC – Grobaulegen in drei Lauder in Bau, Sruder Druck (Nr 4134) aus Elektrizität – Wirtschaft Jg. 87 (1988) ss. 1194-1200.
  • [69] Kramer W., Pillai R.: Verbesserte Hochleistungs-Version eines Kohlebefeuerten Kombi-Kraftwerkes mit Druckwirbelschichtfeuerung ASME pfbc, v20, MAT. INF.
  • [70] Kryłłowicz W., Hanusek P.: Probleme der Auslegung von Konvertergasgeblaesen, XXX Kraftwerktechnisches Kolloquium, Turbomaschinen fuer Kraftwerke, 1998, Dresden, poster PSV.
  • [71] Kryłłowicz W., Hanusek P., Werner A., Janczak S., Porochnicki J.: Uruchomienie linii odzysku gazu konwertorowego w Hucie Katowice S.A., Cieplne Maszyny Przepływowe Nr 119, 2001, ss. 99-106.
  • [72] Kryłłowicz W., Hanusek P., Porochnicki J.: Effiziente Kraftwerksanlage mit Dampfeinduesung In Die Gasturbine bei erniedrigten Turbinen-Austrittsdruck, 2004, XXXVI Kraftwerkstechnisches Kolloquium, Tagungsband I, ref. V.B.
  • [73] Krysiński J., Chodkiewicz R., Porochnicki J.: Blok kombinowany gazowo-parowy zintegrowany z procesem krakingu fluidalnego ropy naftowej. Konferencja Naukowo-Techniczna – Elektrownie i Elektrociepłownie Gazowo-Parowe, EGP 2000, Poznań Kiekrz 2000.
  • [74] Laudyn D., Pielik M., Strzelczyk F.: Elektrownie, III Wyd. WNT – Warszawa 1997.
  • [75] Li J., Johnson T.M., Zahn C., Tayler R.P., Liu Z., Jiang Z.: Energy demand in China: Overview Report, Subreport Number 2 in China: Issues and Options in Greenhouse Gas Emissions Control, Report prepared for the Industry and Energy Division of the World Bank, with support from the Global Environment Facility, February 1995.
  • [76] Loggio A., Strasser A.: CHENG Cycle Cogeneration System Application and Experience of Exhaust Gas Condensing, Proc. POWER’GEN’96 Budapest.
  • [77] Marten van der Burgt: Hydrogen expands opportunities for power generation in refineries. Modern Power Systems, April 2004, ss. 21-25.
  • [78] Mc Conts C.Y., Stevens S.H.: Five Spot Production Pilot on Tight Spacing: Rapid Evaluation of a Coal Bed Methane Block in the Upper Silesian Coal Basin, Poland, The 2001 International Coal Bed Methane Symposium University of Alabama, Paper-0124.
  • [79] Mc Neely M.: GE’s LMS 100, a ‘Gme Changer, Diesel and Gas Turbine Worldwide, Jan.-Febr. 2004, ss. 38-42.
  • [80] Miller E.H., Schofield P.: The Performance of Large Steam Turbine Generators with Water Reactors. Paper Winter Annual Meeting ASME by General Electric, New York 1972.
  • [81] Miller E.H.: Blade Erosion – FCCU Power Recovery Expanders. 1989. D-R Turbo Products Division, Olean, N.Y.
  • [82] Miller A., Milewski J., Kiryk S.: Remarks on Hydrogen-Fuelled Combustion Turbine Cycle, 2000, COMPOWER 2000, Gdańsk, ss. 239-248.
  • [83] Miller H.F.: Blade-Erosion FCC Power Recovery Expanders Dresser-Rand. Turbo Products Division. Olean, NY.
  • [84] Nowak W.: Circulating Fluidized Bed Technology for Power Generation – Polish Experience, XXXVI Kraftwerkstechnisches Kolloquium, Tagungsband I, 2004 Dresden, Vortrage V8.
  • [85] Okamura T., Koga A., Ito S. and Kawagishi H.: Evaluation of 1700C Class Turbine Blades in Hydrogen Fuelled Combustion Turbine System. ASME, 200GT-0615.
  • [86] de Papee M., Dick E.: Water Recovery in Steam-Injected Gas Turbines: a Technological and Economical Analysis, 1999, European J. Mech. Environ. Eng., ss. 195-204.
  • [87] Porochnicki J.: Studium koncepcyjno-konstrukcyjne osiowych stopni turbino-wych, w których wykorzystuje się upusty regeneracyjne oraz odsysanie i domieszanie strug dla osuszania pary i poprawy sprawności stopni, 1972, Problem węzłowy 04.1.2 – Wytwarzanie Energii Elektrycznej w Elektrowniach Cieplnych z Reaktorami Jądrowymi, stron 47, 3 rys. zestaw. turbiny 6K500.
  • [88] Porochnicki J., Dębiec S., Hanusek P., Płoszajski A.: Wpływ różnych sposobów odsysania warstwy przyściennej na stratę profilową palisady łopatkowej, 1981, Zesz. Nauk. IMP-PAN, Gdańsk, 114/1022/B1, ss. 81-103.
  • [89] Porochnicki J., Chodkiewicz J.: Turbozespół gazowy z rekuperacją ciepła w przemysłowych systemach energetycznych. CMP 2001, Nr 119, ss. 45-51.
  • [90] Porochnicki J., Chodkiewicz R., Hanausek P., Kryłłowicz W.: Conceptional Study Devoted to Gas Turbines with Off-Engine Compressors Incorporated into Coal-Fired Power Plants, CMP 2005, No. 128 ss. 427-440.
  • [91] Pruschek R.: Zukünftige Kohlekraftwerke, BWK, 2001, Bd. 53, Nr 12, ss. 40-48.
  • [92] Radgen P.: Fertilizer Production from Coal and Coal Bed Methane with Minimized Karbon Dioxide Emissions. 2002, VDI-Berichte No. 1714, 2002, ss. 229-242.
  • [93] Rao A.D., Joiner J.R.: A Technical and Economic Evaluation of the Humid Air Turbine Cycle, (1990), Proc. Annual International Pittsburgh Coal Conference.
  • [94] Reeves S., Taillefert A.: Reservoir Modeling for the Design of the RECOPOL CO2 Sequestration Project, Poland. Topical Report, U.S. Department of Energy Award Number DE-FC 26-FC 26-00 NT 409 24, July 2002.
  • [95] Rufli P.: Systematische Berechnung über kombinierte Gas-Dampf-Kraftwerke, Diss. ETH Nr. 9178.
  • [96] Rydstrandt M., Westermark M., Barlet M.: An Analysis of the Efficiency and Economy of Humidified Gas Turbines in District Heating Applications, Proc. ECOS 2002, Vol. II, ss. 696-703.
  • [97] Schack K.: Der industrielle Wärmeübergang, 8. Auflage, Düsseldorf, Stahleisen 1983.
  • [98] Scheffknecht G., Stamatelopulos G.N., Lorey H.: Moderne Kholekraftwerke. BWK, Bd. 54 (2002) Nr 6, ss. 45-51.
  • [99] Shapiro A.H.: The Dynamic and Thermodynamic of Compressible Fluid Flow, Ronald Press, New York 1953.
  • [100] Shoko Ito; Hiroshi Saeki, Asako Inomata, Fumio Ootomo, Katsuya Yamashita, Yosshitaka Fukujama, Elichi Koda, Turu Takehashita, Mikio Sato, Miki Koyama Turu Ninomiya: Conceptual Design and Cooling Blade Development 1700°C Class High-Temperature Gas Turbine, 2005, Journal of Engineering for Gas Turbines and Power, April 2005, Vol. 127, ss. 359-368.
  • [101] Shrivastava K.D., Maccallum N.R.L.: The Effect of a Transversely Injected Streamon the Flow through Turbine Cascades – Part I: Flow Effects, ASME PAPER No. 77-GT-87, 1987.
  • [102] Staff report (Genset Review): The industrial Trent makes the grade, Modern Power Systems, Jan. 1999, ss. 51-53.
  • [103] Staff Report: Industrial Trent stretches Sharp and technology, Modern Power Systems, September 2000, ss. 35-37.
  • [104] Stamatelopulos G.N., Klauke F., Stolzenberger C.G.: KohleKraftwerke mit einem Wirkungsgrad von über 50% darg estellt am Project AD700 und COMTES 700. XXXVI Kraftwerkstechnisches Kolloquium, Dresden 2004, Vortrag V18.
  • [105] Svend Bram, De Ruyck J.: Exergy analysis tool for ASPEN applied to evaporative cycle design, ECOS’96, Stockholm 1996.
  • [106] Szargut J., Cholewa A.: Siłownia turbogazowa na wilgotne powietrze. Gospodarka Paliwami i Energią. 4/1997.
  • [107] Szargut J.: Comparison of the Variants of a Primary Gas Turbine Supplementing a Coal-Fired Power Plant. Proc. of the conference ECOS’01 July 4-6, 2001, Istanbul, s. 325.
  • [108] Szargut J.: Termodynamika – PWN, Warszawa 2000, Wyd. IV.
  • [109] Tacke M., Lenk U.: Gasturbinen Produktinformationen 1998, Interne Unterlage, Siemens AG, Bereich Energieerzeugung (KWU).
  • [110] Traupel W.: Thermische Turbomaschinen, Bd 1, 1977, Springer Verlag.
  • [111] Turbiny gazowe – Ponowne rozpatrzenie obiegu HAT pozwala uzyskać lepsze osiągi, Modern Power Systems – Czerwiec 1993.
  • [112] Ullmans Encyclopedia of Industrial Chemistry: Ammonia. Volume A2, ss. 143-242, 5th Edition, VCH Verlag, Veisheim, Germany 1985.
  • [113] Varley J.: Modernizing Metrum: 40 green MW from a Coal Plant. Modern Power Systems, 2004 July, ss. 11-13.
  • [114] Varley J.: Siersza: from polluter to Polish paragon, Modern Power Systems, July 2004.
  • [115] VDI – Wärmeatlas, 3. Auflage, Dusseldorf, VDI-Verlag 1984.
  • [116] Venalainen I., Psik R.: 460 MW Supercritical CFB Boiler Design for the Łagisza Power Plant. PowerGen Europe 2007.
  • [117] Word Energy Outlook, International Energy Agency, 1998.
  • [118] Waldyr L.R. Gallo: A comparison between the HAT cycle (humid air turbine) and other gas turbine based cycles, ECOS’96, Stockholm 1996.
  • [119] Westermaek M.: Method and Device for Generation of Mechanical Work, if Desired Heat in an Evaporative Gas Turbine Process, International Patent Application, No. PCT/SE96/00936.
  • [120] Wiśniewski S.T.: Wymiana ciepła, WNT, Warszawa 1997, s. 251.
  • [121] Yun H. Xiao, Rui X. Cai, Ru M. Lin: Modelling HAT cycle and thermodynamic evaluation, ECOS’96, Stockholm 1996.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b7bb894c-7b99-430d-bead-42fec81cc4d9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.