PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Non-contact surface thermal deformation measurement based on chromatic confocal sensor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Chromatic confocal sensors are widely used in chip processing, high-precision instrument manufacturing, industrial testing and other fields because of high-precision displacement recognitioncapabilities. This research combines a chromatic confocal device with resistance temperature detector for dynamic deformation measurement of heating pipeline. The system is suitable for the measuring range of 300 µm and resolution can reach 0.3 µm. Using finite element method to simulate thermal deformation of aluminium with a thickness of 2 mm, and obtaining simulation trends and results. The end face of aluminium is heated continuously and uniformly in experiment, recording the data of spectral, laser triangular displacement sensor, and temperature sensor at 10°C intervals, respectively. And using Gaussian fitting algorithm to obtain spectral peaks, the corresponding thermal deformation is obtained through the relationship between wavelength and axial displacement. The results show that the experimental data of the chromatic confocal sensor is consistent with the laser triangular displacement sensor basically, with a maximum standard deviation of 1.06. In addition, simulation and experimental trends are consistent.
Czasopismo
Rocznik
Strony
245--257
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
  • University of Shanghai for Science and Technology, Shanghai 200093, China
autor
  • University of Shanghai for Science and Technology, Shanghai 200093, China
autor
  • University of Shanghai for Science and Technology, Shanghai 200093, China
autor
  • University of Shanghai for Science and Technology, Shanghai 200093, China
autor
  • University of Shanghai for Science and Technology, Shanghai 200093, China
Bibliografia
  • [1] VISHNUVARDHAN S., MURTHY A.R., CHOUDHARY A., A review on pipeline failures, defects in pipelines and their assessment and fatigue life prediction methods, International Journal of Pressure Vessels and Piping 201, 2023: 104853. https://doi.org/10.1016/j.ijpvp.2022.104853
  • [2] MAHJOUBI S., TAN X., BAO Y., Inverse analysis of strain distributions sensed by distributed fiber optic sensors subject to strain transfer, Mechanical Systems and Signal Processing 166, 2022: 108474. https://doi.org/10.1016/j.ymssp.2021.108474
  • [3] ZHU X.M., FENG S.K., HUANG T., SHANG F., YANG L.F., Deformation inspection and safety assessment method of buried flexible pipeline in service, IOP Conference Series: Materials Science and Engineering 1043(4), 2021: 042043. https://doi.org/10.1088/1757-899X/1043/4/042043
  • [4] LI G.H., MA W.L., ZHU T.T., FU Z., GE P.X., Thermal deformation measurement of hollow disk based on digital image correlation method, Laser & Optoelectronics Progress 58(14), 2021: 1412003.
  • [5] CHEN J.H., ZHANG G.M., QIU Q.Q., CHEN X.G., TENG, Y.P., JING L.W., SONG N.H., Simulation and experiment on superconducting DC energy pipeline cooled by LNG, Cryogenics 112, 2020: 103128. https://doi.org/10.1016/j.cryogenics.2020.103128
  • [6] ZHANG D., GUAN M.S., ZHANG Q.D., WANG A.G., ZHOU X.L., Simulation study on steel pipe deformation behavior in retained mandrel pipe mill, Journal of Physics: Conference Series 1633(1), 2020: 012163. https://doi.org/10.1088/1742-6596/1633/1/012163
  • [7] ZHAO B., LI J.Y., MAO X.X., SUN F., GAO X.M., Dynamic pressure surface deformation measurement based on a chromatic confocal sensor, Applied Optics 62(6), 2023: 1467-1474. https://doi.org/ 10.1364/AO.482808
  • [8] EDWARDS A.M.J., ATKINSON P.S., CHEUNG C.S., LIANG H., FAIRHURST D.J., OUALI F.F., Density-driven flows in evaporating binary liquid droplet, Physical Review Letters 121(18), 2018: 184501. https://doi.org/10.1103/PhysRevLett.121.184501
  • [9] JANG Y.S., WANG G., HYUN S., KANG H.J., CHUN B.J., KIM Y.J., KIM S.W., Comb-referenced laser distance interferometer for industrial nanotechnology, Scientific Reports 6(1), 2016: 31770. https://doi.org/10.1038/srep31770
  • [10] DONG C.Z., LI K., JIANG Y.X., AROLA D., ZHANG D.S., Evaluation of thermal expansion coefficient of carbon fiber reinforced composites using electronic speckle interferometry, Optics Express 26(1), 2018: 531-543. https://doi.org/10.1364/OE.26.000531
  • [11] WU C.X., CHEN B.J., YE C.S., YAN X.P., Modeling the influence of oil film, position and orientation parameters on the accuracy of a laser triangulation probe, Sensors 19(8), 2019: 1844. https://doi.org/ 10.3390/s19081844
  • [12] LIN J., GUAN J., WEN F., TAN J., High-resolution and wide range displacement measurement based on planar grating, Optics Communications 404, 2017: 132–138. https://doi.org/10.1016/ j.optcom.2017.03.012
  • [13] CHMELIK R., LOVICAR L., HARNA Z., Surface profilometry by a holographic confocal microscopy, Optica Applicata 33(2-3), 2003: 381-389.
  • [14] ZHANG Y.L., YU Q., SHANG W.J., WANG C., LIU T., WANG Y., CHENG F., Chromatic confocal measurement system and its experimental study based on inclined illumination, Chinese Optics 15(3), 2022: 514-524. https://doi.org/10.37188/CO.2021-0181
  • [15] ZOU X.C., ZHAO X.S., LI G., LI, Z.Q., SUN T., Non-contact on-machine measurement using a chromatic confocal probe for an ultra-precision turning machine, The International Journal of Advanced Manufacturing Technology 90, 2017: 2163-2172. https://doi.org/10.1007/s00170-016-9494-3
  • [16] LI S.B., SONG B.F., PETERSON T., HSU J., LIANG R.G., MicroLED chromatic confocal microscope, Optics Letters 46(11), 2021: 2722-2725. https://doi.org/10.1364/OL.427477
  • [17] JURKO J., MIŠKIV-PAVLÍK M., HUSÁR J., MICHALIK P., Turned surface monitoring using a confocal sensor and the tool wear process optimization, Processes 10(12), 2022: 2599. https://doi.org/ 10.3390/pr10122599
  • [18] MA Y.D., XIAO Y.C., WANG Q.Q., YAO K., WANG X.R., ZHOU Y.P., LIU Y.C., SUN Y., DUAN, J., Applications of chromatic confocal technology in precision geometric measurement of workpieces, Journal of Physics: Conference Series 2460, 2023: 012077. https://doi.org/10.1088/1742-6596/ 2460/1/012077
  • [19] COX G., SHEPPARD C.J.R., Measurement of thin coatings in the confocal microscope, Micron 32(7), 2001: 701-705. https://doi.org/10.1016/S0968-4328(01)00017-8
  • [20] ZHOU D.W., GAMBARYAN-ROISMAN T., STEPHAN P., Measurement of water falling film thickness to flat plate using confocal chromatic sensoring technique, Experimental Thermal and Fluid Science 33(2), 2009: 273-283. https://doi.org/10.1016/j.expthermflusci.2008.09.003
  • [21] ZSCHENDERLEIN U., ZHANG H., ECKE R., JÖHRMANN N., WUNDERLE B., Dynamical characterisation of a miniaturised bulge tester for use at elevated temperatures, [In] 2021 22nd International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), St. Julian, Malta, 2021: 1-6. https://doi.org/10.1109/ EuroSimE52062.2021.9410834
  • [22] ZHANG X.H., LIU B.Q., ZHOU F., Pixel gray value correction for wide angle view image, Proceedings of the SPIE, Vol. 9811, MIPPR 2015: Multispectral Image Acquisition, Processing, and Analysis, 2015: 981113. https://doi.org/10.1117/12.2204731
  • [23] TANG X., WANG Q., X. MA X.J., GAO Z.D., MENG J., Determination of the inner-surface profile of a capsule using chromatic confocal spectroscopy, Chinese Optics 13(2), 2020: 266-272.
  • [24] ZAKRZEWSKI A., JUREWICZ P., KORUBA P., CWIKLA M., REINER J., Characterization of a chromatic confocal displacement sensor integrated with an optical laser head, Applied Optics 60(11), 2021: 3232-3241. https://doi.org/10.1364/AO.421382
  • [25] YU Q., ZHANG Y., ZHANG Y., CHENG F., SHANG W., WANG Y., A novel chromatic confocal one-shot 3D measurement system based on DMD, Measurement 186, 2021: 110140. https://doi.org/10.1016/ j.measurement.2021.110140
  • [26] BAI W., LIANG D., CHEN W., CHYU M.K., Investigation of ribs disturbed entrance effect of heat transfer and pressure drop in pin-fin array, Applied Thermal Engineering 162, 2019: 114214. https://doi.org/10.1016/j.applthermaleng.2019.114214
  • [27] LI W.T., HUANG B.H., BI Z.B., Analysis and Application of Thermal Stress Theory, China Electric Power Publishing House, 2004: 89-90.
  • [28] ABDOLLAHI A., NORRIS S.E., SHARMA R.N., Heat transfer measurement techniques in microchannels for single and two-phase Taylor flow, Applied Thermal Engineering 162, 2019: 114280. https://doi.org/ 10.1016/j.applthermaleng.2019.114280
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b7b87c66-a51f-4f2d-989c-a4ad2cbba565
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.