PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A proposed quantitative method for assessing the impact of river regulation on its hydromorphological status

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Changes in river channel morphological parameters are influenced by anthropogenic factors, such as climatic changes, river catchment management changes, and hydrotechnical development of rivers. To assess the intensity of individual pressures and the resulting changes in abiotic and biotic factors in the riverbed, water quality monitoring is conducted, including the assessment of the hydromorphological status. The assessment can be based on the River Habitat Survey (RHS) which is a synthetic method that includes the evaluation of habitat character and river quality based on their morphological structure. The input data, which characterise any river include physical features of hydrotechnical structures, bed granulation, occurrence of bedforms, visible morphodynamic phenomena, and a sediment transport pattern. The RHS method allows to determine two quantitative indices used to evaluate the hydromorphological status: Habitat Modification Score (HMS), which determines the extent of transformation in the morphology of a watercourse, and Habitat Quality Assessment (HQA), which is based on the presence and diversity of natural elements in a watercourse and river valley. The proposed method can be divided into three stages. The first assesses the river section hydromorphological indices, describing the degree of technical modification (HMS) and the ecological quality of the reach (HQA), using the RHS method. The second stage describes morphological changes resulting from the technical regulation and estimates indices for the regulated reach. Finally, we compare HQA and HMS indices before and after the regulation. This comparison is described by numerical indicators and related to reference values.
Wydawca
Rocznik
Tom
Strony
98--106
Opis fizyczny
Bibliogr. 40 poz., fot., rys., tab.
Twórcy
  • Warsaw University of Life Sciences, Institute of Civil Engineering, Faculty of Civil and Environmental Engineering, Department of Hydrotechnics, Technology and Management, Nowoursynowska St 159, 02-776 Warsaw, Poland
  • Warsaw University of Life Sciences, Institute of Civil Engineering, Faculty of Civil and Environmental Engineering, Department of Hydrotechnics, Technology and Management, Nowoursynowska St 159, 02-776 Warsaw, Poland
Bibliografia
  • Ametepey, S.O. and Ansah, S.K. (2013) “Impacts of construction activities of the environment: The case of Ghana,” Journal of Construction Project Management and Innovation, 4, pp. 934–948.
  • Armitage, P.D. and Pardo, I. (1995) “Impact assessment of regulation at the reach level using macroinvertebrate information from mesohabitats,” Regulated Rivers: Research & Management, 10 (2–4), pp. 147–158. Available at: https://doi.org/10.1002/rrr.3450100210.
  • Bilal, A., Xie, Q. and Zhai, Y. (2020) “Flow, sediment, and morphodynamics of river confluence in tidal and non-tidal environments,” Journal of Marine Science and Engineering, 8(8), 591. Available at: https://doi.org/10.3390/jmse8080591.
  • Biswas, S.S. and Pani, P. (2021) “Changes in the hydrological regime and channel morphology as the effects of dams and bridges in the Barakar River, India,” Environmental Earth Sciences, 80(5). Available at: https://doi.org/10.1007/s12665-021-09490-0.
  • Brooker, M.P. (1985) “The ecological effects of channelization,” The Geographical Journal, 151, pp. 65–69. Available at: https://doi.org/10.2307/633280.
  • Bujakowski, F. and Falkowski, T. (2019) “Hydrogeological analysis supported by remote sensing methods as a tool for assessing the safety of embankments (case study from Vistula River Valley, Poland),” Water, 11(2), 266. Available at: https://doi.org/10.3390/w11020266.
  • Dias, A.J., Fael, C.S. and Núñez-González, F. (2019) “Effect of debris on the local scour at bridge piers,” IOP Conference Series: Materials Science and Engineering, 471, 022024. Available at: https://doi.org/10.1088/1757-899x/471/2/022024.
  • Directive (2000) “Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy,” Official Journal, L 327.
  • Djekovic, V. et al. (2013) “Morphological development of regulated rivers, case study of the river,” Technics Technologies Education Management, 8, pp. 565–573.
  • Enshassi, A., Kochendoerfer, B. and Rizq, E. (2014) “An evaluation of environmental impacts of construction projects,” Revista Ingeniería de Construcción, 29, pp. 234–254.
  • Friedrichs, C., Armbrust, B.D. and deSwart, H. (1998) “Hydrodynamics and equilibrium sediment dynamics of shallow, funnel-shaped tidal estuaries” in J. Dronkers, M. Scheffers (eds.) Physics of estuaries and coastal seas. VIMS Books and Book Chapters, 38. Rotterdam: Balkema, pp. 315–327.
  • Gholami, V. and Khaleghi, M.R. (2013) “The impact of vegetation on the bank erosion (Case study: The Haraz River),” Soil and Water Research, 8(4), pp. 158–164. Available at: https://doi.org/10.17221/13/2012-swr.
  • Graf, W.H. (1998) Fluvial hydraulics. Chichester: John Wiley & Sons Ltd.
  • Grizzetti, B. et al. (2017) “Human pressures and ecological status of European rivers,” Scientific Reports, 7(1), 205. Available at: https://doi.org/10.1038/s41598-017-00324-3.
  • Gualtieri, C. et al. (2019) “A 3D analysis of spatial habitat metrics about the confluence of Negro and Solimões rivers, Brazil,” Ecohydrology, 13(1). Available at: https://doi.org/10.1002/eco.2166.
  • Jędryka, E. and Kamińska, A. (2004) “Badania wybranych parametrów gabionów (obiekty Wilga i Radomka) [Research on selection parameters of gabions (Wilga, Radomka objects)],” Acta Scientiarum Polonorum Architectura, 3, pp. 67–75.
  • Kang, J. et al. (2011) “Experimental investigation on the local scour characteristics around groynes using a hydraulic model,” Water and Environment Journal, 25(2), pp. 181–191. Available at: https://doi.org/10.1111/j.1747-6593.2009.00207.x.
  • Kemp, J.L., Harper, D.M. and Crosa, G.A. (2000) “The habitat-scale ecohydraulics of rivers,” Ecological Engineering, 16(1), pp. 17–29. Available at: https://doi.org/10.1016/s0925-8574(00)00073-2.
  • Kiraga, M. (2020) “The diversification of River Habitat Survey output during four seasons: Case studies of three lowland rivers in Poland,” Journal of Ecological Engineering, 21(6), pp. 116–126. Available at: https://doi.org/10.12911/22998993/123248.
  • Kiraga, M. and Popek, Z. (2014) “Using the River Habitat Survey method in forecasting effects of river restoration,” Annals of Warsaw University of Life Sciences, Land Reclamation, 46(2), pp. 125–138. Available at: https://doi.org/10.2478/sggw-2014-0011.
  • Kondolf, G.M. (1995) “Geomorphological stream channel classification in aquatic habitat restoration: Uses and limitations,” Aquatic Conservation: Marine and Freshwater Ecosystems, 5(2), pp. 127–141. Available at: https://doi.org/10.1002/aqc.3270050205.
  • Korpak, J. (2020) “Assessment of changes in channel morphology in a mountain river regulated using grade control structures,” Journal of Ecological Engineering, 21(8), pp. 163–176. Available at: https://doi.org/10.12911/22998993/126987.
  • Liaghat, A., Adib, A. and Gafouri, H.R. (2017) “Evaluating the effects of dam construction on the morphological changes of downstream meandering rivers (Case study: Karkheh River),” Engineering, Technology & Applied Science Research, 7(2), pp. 1515–1522. Available at: https://doi.org/10.48084/etasr.969.
  • Liang, B. et al. (2019) “Local scour for vertical piles in steady currents: Review of mechanisms, influencing factors and empirical equations,” Journal of Marine Science and Engineering, 8(1), 4. Available at: https://doi.org/10.3390/jmse8010004.
  • Macklin, M.G., Lewin, J. and Woodward, J.C. (2012) “The fluvial record of climate change,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370 (1966), pp. 2143–2172. Available at: https://doi.org/10.1098/rsta.2011.0608.
  • Marchi, L. et al. (2010) “Characterisation of selected extreme flash floods in Europe and implications for flood risk management,” Journal of Hydrology, 394(1–2), pp. 118–133. Available at: https://doi.org/10.1016/j.jhydrol.2010.07.017.
  • Mosley, P. and Jowett, I. (1999) “River morphology and management in New Zealand,” Progress in Physical Geography: Earth and Environment, 23(4), pp. 541–565. Available at: https://doi.org/10.1177/030913339902300405.
  • Naprawa, S. (2017) “Rozpoznawanie wpływu zmiennych parametrów przepływów w rozmywanych korytach rzek na projektowanie budowli hydrotechnicznych [Modeling deterioration and degradation of water headworks infrastracture assets],” Acta Scientiarum Polonorum – Architectura Budownictwo, 16(3), pp. 81–87. Available at: https://doi.org/10.22630/aspa.2017.16.3.08.
  • O’Hare, P. and White, I. (2017) “Beyond ‘just’ flood risk management: The potential for – and limits to – alleviating flood disadvantage,” Regional Environmental Change, 18(2), pp. 385–396. Available at: https://doi.org/10.1007/s10113-017-1216-3.
  • Overeem, I., Kettner, A.J. and Syvitski, J.P.M. (2013) “9.40 Impacts of humans on river fluxes and morphology,” Treatise on Geomorphology, pp. 828–842. Available at: https://doi.org/10.1016/b978-0-12-374739-6.00267-0.
  • Recking, A. et al. (2016) “Quantifying the morphological print of bedload transport,” Earth Surface Processes and Landforms, 41(6), pp. 809–822. Available at: https://doi.org/10.1002/esp.3869.
  • Rinaldi, M. et al. (2015) “Classification of river morphology and hydrology to support management and restoration,” Aquatic Sciences, 78(1), pp. 17–33. Available at: https://doi.org/10.1007/s00027-015-0438-z.
  • Salit, F. et al. (2015) “The influence of river training on channel changes during the 20th century in the Lower Siret River (Romania),” Géomorphologie: Relief, Processus, Environnement, 21(2), pp. 175–188. Available at: https://doi.org/10.4000/geomorphologie.11002.
  • Szoszkiewicz, K. et al. (2008) Hydromorfologiczna ocena wód płynących. Podręcznik do badań terenowych według metody River Habitat Survey w warunkach Polski [Hydromorphological assessment of flowing waters. Handbook for field surveys according to the River Habitat Survey method in Polish conditions]. Ed. 3. Poznań – Warrington: Centre for Ecology and Hydrology.
  • Urbański, J. (2008) “Wpływ szorstkości umocnień w dolnym stanowisku jazu na lokalne rozmycia dna [Influence of roughness of bed protection downstream of weir on local scour]. Przegląd Naukowy Inżynieria i Kształtowanie Środowiska, 17(2), pp. 169-177.
  • Ustawa (2017) “Ustawa z dnia 20 lipca 2017 r. – Prawo wodne,” Dz.U., 2017 poz. 1566.
  • Wang, L. et al. (2018) “Local scour at downstream sloped submerged weirs,” Journal of Hydraulic Engineering, 144(8). Available at: https://doi.org/10.1061/(asce)hy.1943-7900.0001492.
  • Wohl, E. et al. (2005) “River restoration,” Water Resources Research, 41(10). Available at: https://doi.org/10.1029/2005wr003985.
  • Zhou, T. and Endreny, T. (2020) “The straightening of a river meander leads to extensive losses in flow complexity and ecosystem services,” Water, 12(6), 1680. Available at: https://doi.org/10.3390/w12061680.
  • Żelazo, J. (2006) “Renaturyzacja rzek i dolin [River and valley restoration],” Infrastruktura i Ekologia Terenów Wiejskich, 4, pp. 11–31.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b7b8182f-20a7-4334-bc7a-9999e2dc7ef8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.