PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fusion splicing: the penalty of increasing the collapse length of the air holes in ESM-12B photonic crystal fibers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
For optimum fusion splicing process of a photonic crystal fiber, the collapsing of the air holes at any photonic crystal fiber is the key point of either increasing or decreasing the total splice loss. In this paper, an experimental study has been carried out to investigate the relation between total splice loss or total fiber attenuation due to splice loss and the length of the collapsed region of the air holes. This is done by splicing ESM-12B photonic crystal fiber between two equal lengths of single mode fibers and measuring the attenuation at different arc times and arc powers. The results showed that the increase in the length of the collapsed air holes region results in higher loss, therefore, higher fiber attenuation.
Czasopismo
Rocznik
Strony
265--275
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
autor
  • Department of Laser and Optoelectronics Engineering, University of Technology, Baghdad, Iraq
  • Department of Laser and Optoelectronics Engineering, University of Technology, Baghdad, Iraq
autor
  • Department of Applied Science, University of Technology, Baghdad, Iraq
Bibliografia
  • [1] KHATUN M.R., ISLAM M.S., BAZLUR RASHID A.N.M., Analysis of dual core hexagonal PCF based polarization beam splitter, Computer Engineering and Intelligent Systems 3(3), 2012, pp. 1–9.
  • [2] KUMAR P., SHARAM K.K., KANUNGO V., Some PCF structures with elliptical air holes bansed on Dolph Tschebysheff polynomials and its propagation characteristics, International Journal of Engineering Research and Applications (IJERA) 2(3), 2012, pp. 2689–2694.
  • [3] REVATHI S., INABATHINI S., SANDEEP R., Soft glass spiral photonic crystal fiber for large nonlinearity and high birefringence, Optica Applicata 45(1), 2015, pp. 15–24.
  • [4] CHACKO S.C., CHERIAN J.M., SUNILKUMAR K., Low confinement loss photonic crystal fiber (PCF) with flat dispersion over C-band, International Journal of Computer Applications 85(15), 2014, pp. 5–7.
  • [5] SHAYMAA N. ISMAIL, HANAN. J. TAHER, AL-JANABI A.H., Fusion splicing for a large mode area photonic crystal fiber with conventional single mode fiber, Iraqi Journal of Laser 13(A), 2014, pp. 9–17.
  • [6] LIMIN XIAO, DEMOKAN M.S., WEI JIN, YIPING WANG, CHUN-LIU ZHAO, Fusion splicing photonic crystal fibers and conventional single mode fibers: microhole collapse effect, Journal of Lightwave Technology 25(11), 2007, pp. 3563–3574.
  • [7] KUMAR A., CHHABRA K., SETHI L., Injected micro structured fabricated optical fibers with a standard fusion splicer, International Journals of Research (IJR) 1(10), 2014, pp. 978–984.
  • [8] YABLON A.D., BISE R.T., Low-loss high-strength microstructured fiber fusion splices using GRIN fiber lenses, IEEE Photonics Technology Letters 17(1), 2005, pp. 118–120.
  • [9] MEHDE M.S., SALAH ALDEEN ADNAN TAHA, AMMAR ANWER AHMED, The optimum conditions for arc fusion to splice photonic crystal fiber and single mode optical fiber, Engineering and Technology Journal 33(1), 2015, pp. 101–113.
  • [10] MASSARO A., Photonic Crystals – Introduction, Applications and Theory, 1st Ed., InTech Publication, 2012, Chapter 9, pp. 185–187.
  • [11] PRIYAMBADA S., SINGH D.K., Analysis of effective area and splicing loss behavior of square and hexagonal photonic crystal fiber, International Journal of Scientific and Research Publications 3(5), 2013, pp. 1–4.
  • [12] VILLATORO J., MINKOVICH V.P., PRUNERI V., BADENES G., Simple all-microstructured-optical-fiber interferometer built via fusion splicing, Optics Express 15(4), 2007, pp. 1491–1496.
  • [13] MYOUNG JIN KIM, KWAN SEOB PARK, HAE YOUNG CHOI, SE-JONG BAIK, KIEGON IM, BYEONG HA LEE, High temperature sensor based on a photonic crystal fiber interferometer, Proceedings of SPIE 7004, 2008, article 700407.
  • [14] Thorlabs ESM-12B Photonic Crystal Fiber Data Sheet, https://www.thorlabs.com/thorcat/22700/ ESM-12B-SpecSheet.pdf
  • [15] BENNETT P.J., MONRO T.M., RICHARDSON D.J., Toward practical holey fiber technology: fabrication, splicing, modeling, and characterization, Optics Letters 24(17), 1999, pp. 1203–1205.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b7b7e7d6-a7ed-47c6-bff8-216d781efa0e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.