PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Transcranial direct current stimulation as a new method for changing the accommodative response of the eye

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the present study was to test if the exposure to transcranial direct current stimulation (tDCS) would change the excitability of the visual cortex and influence an accommodative response of the ocular lens. Twenty four subjects were divided into two groups: real-stimulation of the occipital cortex in which participants were exposed to real stimulation (1 mA for 12 min), and sham in which subjects were tested with placebo stimulation. The results showed that tDCS might indeed influence accommodative response. The strongest and most evident effect was observed when a 3.0 D accommodative stimulus was used: anodal tDCS increased but cathodal tDCS – decreased the accommodative response. The second finding was that the effect of stimulation was dependent on the examined eye. The right eye with slightly lower visual acuity and weaker accommodative response in pre-test, responded more strongly than the left eye. The short-time tDCS might modulate excitability of the neurons in visual cortex and eye sensitivity, reflected in the change of accommodative response. The tDCS method may be considered a technique that could reinforce conventional active visual training to improve accommodative functions.
Czasopismo
Rocznik
Strony
499--510
Opis fizyczny
Bibliogr. 36 poz., rys.
Twórcy
autor
  • Quantum Electronics Laboratory, Faculty of Physics, Adam Mickiewicz University in Poznań, Umultowska 85, 61-614 Poznań, Poland
  • Quantum Electronics Laboratory, Faculty of Physics, Adam Mickiewicz University in Poznań, Umultowska 85, 61-614 Poznań, Poland
  • Laboratory of Vision Science and Optometry, Faculty of Physics, Adam Mickiewicz University in Poznań, Umultowska 85, 61-614 Poznań, Poland
  • Vision and Neuroscience Laboratory, NanoBioMedical Centre, Adam Mickiewicz University in Poznań, Umultowska 85, 61-614 Poznań, Poland
  • Laboratory of Vision Science and Optometry, Faculty of Physics, Adam Mickiewicz University in Poznań, Umultowska 85, 61-614 Poznań, Poland
  • Vision and Neuroscience Laboratory, NanoBioMedical Centre, Adam Mickiewicz University in Poznań, Umultowska 85, 61-614 Poznań, Poland
Bibliografia
  • [1] STAGG C.J., BEST J.G., STEPHENSON M.C., O’SHEA J., WYLEZINSKA M., TAMAS KINCSES Z., MORRIS P.G., MATTHEWS P.M., JOHANSEN-BERG H., Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation, Journal of Neuroscience 29(16), 2009, pp. 5202–5206.
  • [2] KRAUSE B., MÁRQUEZ-RUIZ J., KADOSH R.C., The effect of transcranial direct current stimulation: a role for cortical excitation/inhibition balance?, Frontiers in Human Neuroscience 7, 2013, p. 602.
  • [3] CREUTZFELDT O.D., FROMM G.H., KAPP H., Influence of transcortical d-c currents on cortical neuronal activity, Experimental Neurology 5(6), 1962, pp. 436–452.
  • [4] NITSCHE M.A., SCHAUENBURG A., LANG N., LIEBETANZ D., EXNER C., PAULUS W., TERGAU F., Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human, Journal of Cognitive Neuroscience 15(4), 2003, pp. 619–626.
  • [5] NITSCHE M.A., PAULUS W., Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans, Neurology 57(10), 2001, pp. 1899–1901.
  • [6] NITSCHE M., PAULUS W., Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation, The Journal of Physiology 527(3), 2000, pp. 633–639.
  • [7] FLOYER-LEA A., WYLEZINSKA M., KINCSES T., MATTHEWS P.M., Rapid modulation of GABA concentration in human sensorimotor cortex during motor learning, Journal of Neurophysiology 95(3), 2006, pp. 1639–1644.
  • [8] STAGG C.J., BACHTIAR V., JOHANSEN-BERG H., The role of GABA in human motor learning, Current Biology 21(6), 2011, pp. 480–484.
  • [9] JACOBS K.M., DONOGHUE J.P., Reshaping the cortical motor map by unmasking latent intracortical connections, Science 251(4996), 1991, pp. 944–947.
  • [10] HESS G., DONOGHUE J.P., Long-term potentiation of horizontal connections provides a mechanism to reorganize cortical motor maps, Journal of Neurophysiology 71(6), 1994, pp. 2543–2547.
  • [11] CLARK V.C., COFFMAN B.A., TRUMBO M.C., GASPAROVIC C., Transcranial direct current stimulation (tDCS) produces localized and specific alterations in neurochemistry: a 1H magnetic resonance spectroscopy study, Neuroscience Letters 500(1), 2011, pp. 67–71.
  • [12] ANTAL A., KINCSES T.Z., NITSCHE M.A., BARTFAI O., PAULUS W., Excitability changes induced in the human primary visual cortex by transcranial direct current stimulation: direct electrophysiological evidence, Investigative Ophthalmology and Visual Science 45(2), 2004, pp. 702–707.
  • [13] ACCORNERO N., LI VOTI P., LA RICCIA M., GREGORI B., Visual evoked potentials modulation during direct current cortical polarization, Experimental Brain Research 178(2), 2007, pp. 261–266.
  • [14] ANTAL A., NITSCHE M.A., PAULUS W., External modulation of visual perception in humans, NeuroReport 12(16), 2001, pp. 3553–3555.
  • [15] KRAFT A., ROEHMEL J., OLMA M.C., SCHMIDT S., IRLBACHER K, BRANDT S.A., Transcranial direct current stimulation affects visual perception measured by threshold perimetry, Experimental Brain Research 207(3–4), 2010, pp. 283–290.
  • [16] ANTAL A., KINCSES T.Z., NITSCHE M., PAULUS W., Modulation of moving phosphene thresholds by transcranial direct current stimulation of V1 in human, Neuropsychologia 41(13), 2003, pp.1802–1807.
  • [17] ANTAL A., KINCSES T.Z., NITSCHE M.A., PAULUS W., Manipulation of phosphene thresholds by transcranial direct current stimulation in man, Experimental Brain Research 150(3), 2003, pp. 375–378.
  • [18] PLOW E.B., OBRETENOVA S.N., FREGNI F., PASCUAL-LEONE A., MERABET L.B., Comparison of visual field training for hemianopia with active versus sham transcranial direct cortical stimulation, Neurorehabilitation and Neural Repair 26(6), 2012, pp. 616–626.
  • [19] SPIEGEL D.P., JINRONG LI, HESS R.F., BYBLOW W.D., DAMING DENG, MINBIN YU, THOMPSON B., Transcranial direct current stimulation enhances recovery of stereopsis in adults with amblyopia, Neurotherapeutics 10(4), 2013, pp. 831–839.
  • [20] GROSVENOR T., Primary Care Optometry, 5th Ed., Elsevier, Boston, 2007.
  • [21] FREGNI F., THOME-SOUZA S., NITSCHE M.A., FREEDMAN S.D., VALENTE K.D., PASCUAL-LEONE A., A controlled clinical trial of cathodal DC polarization in patients with refractory epilepsy, Epilepsia 47(2), 2006, pp. 335–342.
  • [22] POREISZ C., BOROS K., ANTAL A., PAULUS W., Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients, Brain Research Bulletin 72(4–6), 2007, pp. 208–214.
  • [23] LIEBETANZ D., KOCH R., MAYENFELS S., KÖNIG F., PAULUS W., NITSCHE M.A., Safety limits of cathodal transcranial direct current stimulation in rats, Clinical Neurophysiology 120(6), 2009, pp. 1161–1167.
  • [24] FRANZEN O., RICHTER H., STARK L., Accommodation and Vergence Mechanisms in the Visual System, Birkhauser Verlag, Berlin, 2000.
  • [25] HOWARD L.P., ROGERS B.J., Binocular Vision and Stereopsis, Oxford University Press, New York, 1995.
  • [26] CIUFFREDA K.J., Components of clinical near vergence testing, Journal of Behavioral Optometry 3(1), 1992, pp. 3–13.
  • [27] BLAKE R., A primer on binocular rivalry, including current controversies, Brain and Mind 2(1), 2001, pp. 5–38.
  • [28] TONG F., MING MENG, BLAKE R., Neural bases of binocular rivalry, Trends in Cognitive Sciences 10(11), 2006, pp. 502–511.
  • [29] BLACK J.M., HESS R.F., COOPERSTOCK J.R., LONG TO, THOMPSON B., The measurement and treatment of suppression in amblyopia, Journal of Visualized Experiments 14, 2012, p. e3927.
  • [30] DENNY N., FRUMKES T.E., BARRIS M.C., EYSTEINSSON T., Tonic interocular suppression and binocular summation in human vision, The Journal of Physiology 437(1), 1991, pp. 449–460.
  • [31] EYSTEINSSON T., BARRIS M.C., DENNY N., FRUMKES T.E., Tonic interocular suppression, binocular summation, and the visual evoked potential, Investigative Ophthalmology and Visual Science 34(8), 1993, pp. 2443–2448.
  • [32] HESS R.F., THOMPSON B.B., BAKER D.H., Binocular vision in amblyopia: structure, suppression and plasticity, Ophthalmic and Physiological Optics 34(2), 2014, pp. 146–162.
  • [33] VEDAMURTHY I., SUTTLE C.M., ALEXANDER J., ASPER L.J., Interocular interactions during acuity measurement in children and adults, and in adults with amblyopia, Vision Research 47(2), 2007, pp. 179–188.
  • [34] THOMPSON B., MANSOURI B., KOSKI L., HESS R., Brain plasticity in the adult: modulation of function in amblyopia with rTMS, Current Biology 18(14), 2008, pp. 1067–1071.
  • [35] SPIEGEL D.P., HANSEN B.C., BYBLOW W.D., THOMPSON B., Anodal transcranial direct current stimulation reduces psychophysically measured surround suppression in the human visual cortex, PLoS ONE 7, 2012, p. e36220.
  • [36] MOWER G.D., CHRISTEN W.G., Evidence for an enhanced role of GABA inhibition in visual cortical ocular dominance of cats reared with abnormal monocular experience, Developmental Brain Research 45(2), 1989, pp. 211–218.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b7b7aaba-50a6-482c-ad9a-30f0f78fe28f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.