PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stochastic local load redistribution in the fibre bundle model of nanopillar arrays

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We study the breakdown of the nanopillar arrays subjected to axial loading. The pillar-strength-thresholds are drawn from a given probability distribution. Pillars are located in the nodes of the supporting regular lattice. In this work we introduce stochastic local load sharing - after pillar breakdown each of its nearest intact neighbours obtains a random fraction of the failing load. Two types of loading procedure are employed, namely quasi-static and finite force. We analyse critical loads, catastrophic avalanches as well as probabilities of cascade and breakdown.
Rocznik
Strony
19--30
Opis fizyczny
Bibliogr. 15 poz., rys.
Twórcy
autor
  • Institute of Mathematics, Czestochowa University of Technology Częstochowa, Poland
Bibliografia
  • [1] Herrmann H.J., Roux S. (eds.), Statistical Models for the Fracture of Disordered Media, North Holland, Amsterdam 1990 and references therein.
  • [2] Chakrabarti B., Benguigui L.G., Statistical Physics of Fracture and Breakdown in Disordered Systems, Clarendon Press, Oxford 1997.
  • [3] Alava M.J., Nukala P.K.V.V., Zapperi S., Statistical models of fracture, Adv. in Physics 2006, 55, 349-476.
  • [4] Pradhan S., Hansen A., Chakrabarti B.K., Failure processes in elastic fiber bundles, Rev. Mod. Phys. 2010, 82, 499-555.
  • [5] Biswas S., Ray P., Chakrabarti B.K., Statistical Physics of Fracture, Breakdown, and Earthquake: Effects of Disorder and Heterogeneity, Wiley, 2015.
  • [6] Hansen A., Hemmer P.C., Pradhan S., The Fiber Bundle Model: Modeling Failure in Materials, Wiley, 2015.
  • [7] Kun F., Raischel F., Hidalgo R.C., Herrmann H.J., Extensions of fibre bundle models, Lecture Notes in Physics 2006, 705, 57-92.
  • [8] Uchic M.D., Dimiduk D.M., Florando J.N., Nix W.D., Sample dimensions influence strength and crystal plasticity, Science 2004, 305 (5686), 986-989.
  • [9] Greer J.R., Jang D., Kim J.-Y., Burek M.J., Emergence of new mechanical functionality in materials via size reduction, Adv. Functional Materials 2009, 19, 2880-2886.
  • [10] Wang Z.-J., Li Q.-J., Shan Z.-W., Li J., Sun J., Ma E., Sample size effects on the large strain bursts in submicron aluminum pillars, Appl. Phys. Lett. 2012, 100, 071906.
  • [11] Derda T., Avalanche statistics in transfer load models of evolving damage, Scientific Research of the Institute of Mathematics and Computer Science 2011, 10(1), 21-31.
  • [12] Domański Z., Derda T., Sczygiol N., Critical avalanches in fiber bundle models of arrays of nanopillars, Proceedings of the International MultiConference of Engineers and Computer Scientists 2013, Vol II, IMECS 2013, March 13-15, 2013, Hong Kong.
  • [13] Domański Z., Derda T., Sczygiol N., Statistics of critical avalanches in vertical nanopillar arrays, Lecture Notes in Electrical Engineering 2014, 275, 1-11.
  • [14] Dalton F., Petri A., Pontuale G., A random neighbour model for yielding, Journal of Statistical Mechanics: Theory and Experiment 2010, P03011.
  • [15] Lehmann J., Bernasconi J., Breakdown of fiber bundles with stochastic load-redistribution, Chemical Physics 2010, 375 (2-3), 591-599.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b7b725c4-ff6e-4575-ae21-beb887dfb847
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.