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Abstract. We study the breakdown of the nanopillar arrays subjected to axial loading. 

The pillar-strength-thresholds are drawn from a given probability distribution. Pillars are 

located in the nodes of the supporting regular lattice. In this work we introduce stochastic 

local load sharing - after pillar breakdown each of its nearest intact neighbours obtains 

a random fraction of the failing load. Two types of loading procedure are employed, 

namely quasi-static and finite force. We analyse critical loads, catastrophic avalanches 

as well as probabilities of cascade and breakdown. 
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1. Introduction 

The modelling of damage processes is an important issue in the community 

of physicists and engineers. Particularly fracture and damage of heterogeneous 

materials are the problems which have attracted an intensive research over the last 

decades [1-3]. Among the proposed statistical models for failure of heterogeneous 

materials, one is fundamental, namely the fibre bundle model (FBM) [3-6]. The 

approach based on the FBM, yet very simple, is able to capture the most important 

properties of material damage and breakdown in disordered media - various load-

ing conditions, types of load sharing and damage mechanisms can be used. In the 

FBM a material is visible as a discrete set of parallel fibres with stochastic 

strength thresholds. Under a load exceeding its strength threshold a fibre breaks 

and the stress carried by this fibre is redistributed to other fibres according to 

a given load transfer rule. In a global load sharing rule the stress is equally trans-

ferred to all remaining intact fibres. On the other hand, in the case of the local load 

sharing rule, the stress is equally redistributed to the nearest intact neighbours 

of the broken one. Other rules and mixtures of them are also proposed [7]. 

Inspired by experimental compression tests of metallic micro- and nano-sized 

pillars [8-10], we applied the fibre bundle approach to simulate the breakdown 
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in arrays of nanopillars assembled perpendicularly to a flat substrate [11-13]. 

In this paper we propose a stochastic version of the local load sharing rule. As far 

as we know, two other models of stochastic load redistribution are investigated 

in the literature. In the first one it is assumed that the load from the broken element 

is redistributed to a fixed number of randomly chosen intact elements [14]. In the 

second model each intact element obtains a random fraction of the load of the 

damaged element [15]. In our model we restrict the randomness of load redistribu-

tion to the nearest neighbourhood only. 

2. Model of nanopillar array with stochastic load sharing 

We shall consider an array of N longitudinal nanopillars arranged on a two-

dimensional lattice. In this paper only regular arrangements are analysed, namely 

hexagonal, square and triangular symmetries. Figure 1 illustrates regular lattices 

represented by nodes and edges connecting neighbouring nodes. The distance  

between two nodes is calculated as the number of edges in the shortest possible 

path between these nodes. 

 

         

Fig. 1. Regular lattice geometries: hexagonal (left), square (centre), triangular (right). 

Each exemplary configuration consists of 100 nodes 

Due to various defects during fabrication the nanopillars are characterised by 

strength thresholds (also called critical loads) i

thσ , ,,..,, Ni 21=  which are quenched 

random variables. It is assumed that the randomness of the strength thresholds 

represents the disorder of heterogeneous materials. Strength thresholds are typi-

cally distributed according to uniform or Weibull distributions. Uniform distribu-

tion has the probability density and cumulative distribution functions: ( ) 1=thp σ  

and ( ) ththP σσ = , respectively. According to the uniform distribution the pillar- 

-strength-thresholds are drawn from the interval [0,1]. The second employed distri-

bution is the Weibull distribution with density: 
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and distribution function: 
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where ρ  and λ  are the Weibull index and scale parameter, respectively. It is 

assumed that 1=λ . Weibull index controls the degree of disorder in the system. 

As the Weibull index is increased, the disorder degree decreases. Weibull index ρ  

typically varies between 2 and 10. 

In this paper we also employ uniform and Weibull distributions truncated below 

a given initial load per pillar 
0
σ [15]: 
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The nanopillar array is subjected to an external axial load F . Before the appli-

cation of load, all nanopillars in the system are intact. We employ two different, 

but equivalent procedures of loading. The first one is a quasi-static loading. In this 

approach the initial load equals zero ).( 0=F  Then the external load is uniformly  

increased on all intact pillars until the weakest pillar breaks. The destruction of 

a pillar, caused by a load attaining its strength threshold, is instantaneous and 

irreversible. After the breakdown of the weakest pillar, the increase of external 

load stops and load from the damaged pillar is transferred to other surviving pillars 

in the system according to a given load transfer rule. We apply the stochastic local 

load sharing, i.e. the load coming from the damaged pillar is redistributed in random 

fractions to its nearest surviving neighbours. If the damaged pillar has M  intact 

neighbours, the load tr

kσ  transferred to the k-th neighbour can be described by 

the formula: 
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Here, factors jδ , Mj ,...,2,1=  are random numbers drawn according to 

a uniform distribution on the interval [0,1], 
d
σ  is the load carried by the damaged 

pillar. 
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Load redistribution increases stresses on the intact neighbours of a just damaged 

pillar - it may provoke further failures and, after the next load transfers, possible 

cascades of subsequent failures. If the load transfer does not cause further failures, 

it means that equilibrium state is reached. In such a stable state the external load 

is again uniformly increased on all intact pillars until the destruction of the weakest 

pillar. The above described procedure is repeated up to the failure of all pillars 

in the set. 

Loading of the system can also be realised using an external force which is kept 

constant during the entire loading process. All pillars with strength thresholds 

smaller than NF /  are destroyed immediately after application of force F . 

The load from destroyed pillars is redistributed according to a stochastic local 

load sharing. 

3. Results of the numerical simulations 

3.1. Critical loads and catastrophic avalanches in quasi-static loading 

For a quasi-static loading procedure, the destruction of the system proceeds in 

an avalanche-like manner. Load increase induces failure of one or more pillars and 

the next load increase provokes subsequent failures etc. Hence, the number of 

damaged pillars between two consecutive load increments is called an avalanche 

(∆). It follows that each avalanche is initiated by increase of external load. 

Many cascades of simultaneous pillar crashes appear during the final stage 

of the system damage. These cascades, leading to a complete system breakdown, 

form the catastrophic (critical) avalanche 
c
∆ . The emergence of the catastrophic 

avalanche is triggered by attaining critical load 
c
F . This means that the first cas-

cade in the critical avalanche is initiated by the external load increase, the next cas-

cades are induced only by internal stress redistribution. In the following we exam-

ine critical loads and catastrophic avalanches. 

In numerical simulations the cycle of a complete system breakdown was 

performed many times in order to obtain reliable results. For each simulation 

pillar-strength-thresholds were drawn separately. 

In order to compare results for different system sizes, the catastrophic avalanche 

sizes and critical loads have been scaled by the appropriate initial system sizes: 

N
c
/∆  and NF

cc
/=σ . 

Figure 2 illustrates results of the mean critical loads 
c
σ  for three different 

lattice geometries. For all analysed arrangements 
c
σ  is a monotonically decreas-

ing function of the system size N - this is in accordance with our previous results 

for the classical LLS rule [12, 13]. Taking into consideration lattice geometry, there 
is an ordering: hexagonal (weakest), square, triangular (strongest). Arrangement of 
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pillars in the nodes of a given lattice is associated with a specific number of nearest 

neighbours. In hexagonal arrangement the pillar has three nearest neighbours, 

square arrangement - four, triangular  arrangement - six. The bigger the number 

of nearest neighbours, the more dispersed transfer from destroyed pillar. For this 

reason the triangular arrangement is the strongest one. From Figure 2 it is also seen 

that a square system with a stochastic local load transfer is significantly weaker 

than a square system with classical local load sharing. It can be explained as fol-

lows: in the classical model load from destroyed pillar is equally redistributed to its 

nearest intact neighbours. For instance, if the damaged pillar has four nearest intact 

neighbours, each of these neighbours obtains one quarter of its load. For our sto-

chastic model, in such a situation, each of the neighbours obtains on average one 

quarter of its load. However, some neighbours obtain more than one quarter, others 

less than one quarter. For example, there is almost 30% probability that the intact 

neighbour obtains at least one third of the load from the destroyed pillar. It increases 

the failure probability of these neighbouring pillars and, in consequence, the prob-

ability of subsequent pillar failures rises. 

 

 

Fig. 2. The mean critical load cσ  versus square root of the system size N  

for different system arrangements: hexagonal (circles), square (squares), triangular 

(diamonds). Triangles represent results for the classical LLS rule on a square lattice. 

The averages are taken from at least 1000 samples for each presented value. 

Uniform distribution of strength thresholds is applied 

Figure 3 presents the mean sizes of the normalized catastrophic avalanches. All 

regular pillar arrangements can be compared: the ordering reported for the critical 

loads is reversed. Normalized catastrophic avalanche sizes rise with increasing 

system size. This is consistent with results obtained for the classical LLS rule 

[12, 13]. It is seen from Figures 2 and 3 that results for the classical LLS rule 

on square lattice and for the stochastic LLS rule on triangular lattice are almost 

the same. 
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Fig. 3. The mean size of the critical avalanche 
c
∆  scaled by the number of pillars versus 

the square root of the system size N  for different system arrangements: hexagonal 

(circles), square (squares), triangular (diamonds). Triangles represent results for the classical 

LLS rule on a square lattice. The averages are taken from at least 1000 samples for each 

presented value. Uniform distribution of strength thresholds is applied 

 

Fig. 4. Empirical probability density functions of the 
c
σ  in an array with: 4040×  (uniform 

distribution, circles), 8080×  (uniform distribution, squares) and 8080×  pillars 

(Weibull distribution with index 2=ρ , diamonds). The solid lines represent 

skew-normally distributed 
c
σ  with parameters computed from the samples 

In order to investigate distributions of 
c
σ  and N

c
/∆  we have performed a series 

of simulations for the following square arrangements: 4040×  (uniform distribution, 

475 000 samples), 8080×  (uniform and Weibull distributions, 30 000 samples). 

Empirical probability density distributions of 
c
σ  and N

c
/∆  are graphically 

reported in Figures 4 and 5, respectively. Distributions of 
c
σ  and N

c
/∆  follow 

three-parameter skew normal distribution, which is a generalisation of normal 

distribution allowing for non-zero skewness. The distribution of 
c
σ  has a negative 

skewness, while N
c
/∆  is characterised by a positively skewed distribution. 
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Fig. 5. Empirical probability density functions of the Nc /∆  in an array with: 

4040× (uniform distribution, circles), 8080×  (uniform distribution, squares) and 

8080×  pillars (Weibull distribution with index 2=ρ , diamonds). The solid lines 

represent skew-normally distributed N
c
/∆  with parameters computed from the samples 

3.2. Probabilities of breakdown and cascade for fixed external load 

In this subsection we analyse the results of damage processes in nanopillar 

arrays loaded by finite force .F  Application of finite force on the nanopillar array 

can lead to a partial damage - the system reaches an equilibrium after cascades 

of the pillar crashes. Cascades may also be self-sustained until complete system 

failure. Besides, there is a probability of no-cascade - all pillars in the array have 

strength thresholds bigger than ./NF=σ  

Two classes of pillar-strength-threshold distributions are considered, namely 

distributions without and with truncation. We assume that the initial load NF /=σ  

of all pillars is equal. Systems with non-truncated distributions are subjected to 

various external forces F, whereas the initial pillar stress in arrays with distribu-

tions truncated below 
0
σ  is always equal to NF /

0
=σ . Furthermore, in the latter, 

the weakest pillar has strength-threshold 
0
σσ =th . It ensures destruction of at least 

one pillar. 

We focus on the calculation of the following quantities: 

– cascade probability cP - the  probability that an initial pillar destruction induces 

subsequent pillar failures. It is reasonable to compute this quantity for systems 

with truncated distributions, 

– breakdown probability bP - application of force F  leads to the destruction of all 

pillars i.e. complete breakdown of the system. 

Figures 6 and 7 present empirical breakdown probabilities of systems with 

pillar-strength-thresholds drawn according to non-truncated distributions. We observe 
dependence between breakdown probability and the number of nearest neighbours 

in the given lattice: the bigger the number of nearest neighbours, the smaller 
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the probability of system breakdown under a given load (see Fig. 6). However, 

this dependence is restricted to some interval between loads too small to provoke 

complete failure of any arrangement and loads large enough to damage all 

arrangements. From Figure 7 it is seen that breakdown probability under given 

initial load σ  increases as the system size is increased. It can be concluded that 

these two dependencies are consistent with the results of critical loads discussed 

in the previous subsection. 

 

 

Fig. 6. Empirical breakdown probability bP  as a function of initial load per pillar σ  

for different pillar arrangements: hexagonal (circles), square (squares) and triangular 

(diamonds). Arrays consist of 
2

128  pillars with uniformly distributed strength thresholds. 

1000 samples were taken for each presented value. The dashed lines represent 

function (6) with parameters computed from simulations 

 

Fig. 7. Empirical breakdown probability bP  as a function of initial load per pillar σ  

for different system sizes: 6464×  (circles), 8080×  (squares) and 128128×  pillars 

(diamonds). Strength thresholds are drawn according to Weibull distribution with index 

2=ρ . At least 1000 samples were taken for each presented value. The dashed lines 

represent function (6) with parameters computed from simulations 
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Breakdown probability as a function of initial load per pillar σ  can be well 

approximated (dotted lines in Figs. 6 and 7) by the function: 
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where ξ , ω , α  are coefficients obtained from simulation results, ( )zerfc  represents 

complimentary error function 

 ( ) ( ) ( )dttzz

z

∫ −=−=

0

2exp
2

1
π

erferfc  (7) 

and ( )ax,T  is Owen’s T function which calculates 

 ( ) ( )
( )

( )
dt

t

tx

ax

a

∫
+









+−

= −

0
2

22

1

1

1
2

1
exp

2, πT  ( )+∞<<∞− ax,  (8) 

Formula (6) is in fact a cumulative distribution function of the skew normal 

distribution with parameters: location ξ , scale ω  and shape α . So, there is 

an evident connection between the distribution of critical loads in a quasi-static 

procedure and the breakdown probability of the systems with the applied finite 

force. 

In the last part we analyse results for systems with pillar-strength-thresholds 

truncated below 
0
σ  i.e. an initial load per pillar. 

Figure 8 illustrates cascade and breakdown probabilities as a function of 

load 
0
σ . It is seen that cascade probability cP  initially increases while breakdown 

probability bP  is almost zero, but as the 
0
σ  grows, the bP  rises more rapidly 

than cP . For 9.0
0
>σ  the probabilities of breakdown and cascade start to converge 

- the formation of cascade is nearly tantamount to system breakdown. 

Formula (6) with adequate coefficients can serve as an approximate function 

of breakdown probability and cascade probability in the case of truncated distribu-

tions (see Figs. 8 and 9). One exception to this is cP  with truncated uniform distri-

bution. We have found that cP  for truncated Weibull distributions can also be 

nicely fitted by the formula 

 ( ) ( ){ }ηϕσσ
00

exp1 −−=
c
P  (9) 

where ϕ , η  are coefficients obtained from the simulation results. Graphically it 

has been shown in Figure 10. Results of cascade probability for truncated uniform 
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distributions are also included, but none of the presented fitting functions can be 

used as an approximate formula. 

 

 

Fig. 8. Empirical: breakdown (squares) and cascade (circles) probabilities as a function 

of initial load per pillar 0σ  for system of 6464×  pillars. Strength thresholds are drawn 

according to Weibull distribution truncated below 0σ  ( 2=ρ ). The results are taken 

from 2000 samples for each presented value. The dashed lines represent 

function (6) with parameters computed from simulations 

 

Fig. 9. Empirical breakdown probability bP  as a function of initial load per pillar 0σ  

for systems with truncated Weibull distributions: 2=ρ  (circles), 5=ρ  (squares) 

and truncated uniform distribution (diamonds). The results of the loading process 

of 128128×=N pillars (square arrangement) are taken from 2000 realizations 

for each presented value. The dashed lines represent function (6) 

with parameters computed from simulations 



Stochastic local load redistribution in the fibre bundle model of nanopillar arrays 29

 

Fig. 10. Empirical cascade probability 
c
P  as a function of initial load per pillar 0σ  

for systems with truncated Weibull distributions: 2=ρ  (circles), 5=ρ  (squares) 

and truncated uniform distribution (diamonds). The results of the loading process 

of 128128×=N pillars (square arrangement) are taken from 2000 realizations 

for each presented value. The dashed lines for systems with truncated Weibull 

disorder represent function (9) with parameters computed from simulations 

4. Conclusions 

In this paper, we have introduced stochastic local load redistribution in the fibre 

bundle model of nanopillars arrays. Two different, but equivalent loading types 

are considered: quasi-static and finite force. 

Based on the simulation results for quasi-static loading, we have noticed 

significant system strength decrease in comparison to the classical local load 

sharing. We have also reported that critical load and the number of nearest 

neighbours in a given lattice type are positively dependent. Values of critical load 

and catastrophic avalanche sizes follow a skew normal distribution. 

For the procedure with the applied finite force, we have found that probabilities 

of breakdown and cascade are well fitted by the formula (6) which is a cumulative 

distribution function of the skew normal distribution. We also propose formula (9) 

as a fitting function for the cascade probability in case of pillar-strength-thresholds 

drawn according to a truncated Weibull distribution. 
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